首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

2.
The crystal structures of 9‐[(E)‐(4‐nitrophenyl)vinyl]‐9H‐carbazole and 9‐[(E)‐(3‐nitrophenyl)vinyl]‐9H‐carbazole, both C20H14N2O2, are determined mainly by van der Waals forces and π–π interactions between the carbazole and benzene systems. However, the packing modes are different. In the 4‐nitro derivative, the molecules in the weakly bound stack are related by a unit‐cell translation, while in the 3‐nitro derivative there are centrosymmetric pairs of molecules joined by π–π interactions and also pairs of molecules, related by another centre of symmetry, connected by eight relatively short C—H...O interactions.  相似文献   

3.
In the crystal structures of the two imidazole derivatives 5‐chloro‐1,2‐dimethyl‐4‐nitro‐1H‐imidazole, C5H6ClN3O2, (I), and 2‐chloro‐1‐methyl‐4‐nitro‐1H‐imidazole, C4H4ClN3O2, (II), C—Cl...O halogen bonds are the principal specific interactions responsible for the crystal packing. Two different halogen‐bond modes are observed: in (I), there is one very short and directional C—Cl...O contact [Cl...O = 2.899 (1) Å], while in (II), the C—Cl group approaches two different O atoms from two different molecules, and the contacts are longer [3.285 (2) and 3.498 (2) Å] and less directional. In (I), relatively short C—H...O hydrogen bonds provide the secondary interactions for building the crystal structure; in (II), the C—H...O contacts are longer but there is a relatively short π–π contact between molecules related by a centre of symmetry. The molecule of (I) is almost planar, the plane of the nitro group making a dihedral angle of 6.97 (7)° with the mean plane of the imidazole ring. The molecule of (II) has crystallographically imposed mirror symmetry and the nitro group lies in the mirror plane.  相似文献   

4.
The slow evaporation of analytical NMR samples resulted in the formation of crystals of (E)‐2‐({[4‐(dimethylamino)phenyl]imino}methyl)‐4‐nitrophenol, C15H15N3O3, (I), and (E)‐2‐({[4‐(diethylamino)phenyl]imino}methyl)‐4‐nitrophenol, C17H19N3O3, (II). Despite the small structural difference between these two N‐salicylideneaniline derivatives, they show different space groups and diverse molecular packing. The molecules of both compounds are close to being planar due to an intramolecular O—H...N hydrogen bond. The 4‐alkylamino‐substituted benzene ring is inclined at an angle of 13.44 (19)° in (I) and 2.57 (8)° in (II) with respect to the 4‐nitro‐substituted phenol ring. Only very weak intermolecular π–π stacking and C—H...O interactions were found in these structures.  相似文献   

5.
Infinite chains connected by N—H...N hydrogen bonding form the primary packing motif in two closely related 4‐nitroimidazole derivatives, viz. 5‐bromo‐2‐methyl‐4‐nitro‐1H‐imidazole, C4H4BrN3O2, (I), and 2‐methyl‐4‐nitro‐1H‐imidazole‐5‐carbonitrile, C5H4N4O2, (II). These chains are almost identical, even though in (II) there are two symmetry‐independent molecules in the asymmetric unit. The differences appear in the interactions between the chains; in (I), there are strong C—Br...O halogen bonds, which connect the chains into a two‐dimensional grid, while in (II), the cyano group does not participate in specific interactions and the chains are only loosely connected into a three‐dimensional structure.  相似文献   

6.
The title compound [systematic name: 1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐3‐iodo‐5‐nitro‐1H‐indole], C13H13IN2O5, exhibits an anti glycosylic bond conformation with a χ torsion angle of −114.9 (3)°. The furanose moiety shows a twisted C2′‐endo sugar pucker (S‐type), with P = 141.3° and τm = 40.3°. The orientation of the exocyclic C4′—C5′ bond is +ap (gauche, trans), with a γ torsion angle of 177.4 (2)°. The extended crystal structure is stabilized by hydrogen bonding and I...O contacts, as well as by stacking interactions. The O atoms of the nitro group act as acceptors, forming bifurcated hydrogen bonds within the ac plane. Additionally, the iodo substituent forms an interplanar contact with an O atom of the nitro group, and another contact with the O atom of the 5′‐hydroxy group of the sugar moiety within the ac plane is observed. These contacts can be considered as the structure‐determining factors for the molecular packing in the crystal structure.  相似文献   

7.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

8.
The title compound, C12H8N2O6S2, (I), is a positional isomer of S‐(2‐nitrophenyl) 2‐nitrobenzenethiosulfonate [Glidewell, Low & Wardell (2000). Acta Cryst. B 56 , 893–905], (II). The most obvious difference between the two isomers is the rotation of the nitro groups with respect to the planes of the adjacent aryl rings. In (I), the nitro groups are only slightly rotated out of the plane of the adjacent aryl ring [2.4 (6) and 6.7 (7)°], while in (II) the nitro groups are rotated by between 37 and 52°, in every case associated with S—S—C—C torsion angles close to 90°. Other important differences between the isomers are the C—S—S(O2)—C torsion angle [78.39 (2)° for (I) and 69.8 (3)° for (II) (mean)] and the dihedral angles between the aromatic rings [12.3 (3)° for (I) and 28.6 (3)° for (II) (mean)]. There are two types of C—H...O hydrogen bond in the structure [C...O = 3.262 (7) Å and C—H...O = 144°; C...O = 3.447 (7) Å and C—H...O = 166°] and these link the molecules into a two‐dimensional framework. The hydrogen‐bond‐acceptor properties differ between the two isomers.  相似文献   

9.
The title compound [systematic name: 7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐7H‐imidazo[1,2‐c]pyrrolo[2,3‐d]pyrimidine hemihydrate], 2C13H14N4O3·H2O or (I)·0.5H2O, shows two similar conformations in the asymmetric unit. These two conformers are connected through one water molecule by hydrogen bonds. The N‐glycosylic bonds of both conformers show an almost identical anti conformation with χ = −107.7 (2)° for conformer (I‐1) and −107.0 (2)° for conformer (I‐2). The sugar moiety adopts an unusual N‐type (C3′‐endo) sugar pucker for 2′‐deoxyribonucleosides, with P = 36.8 (2)° and τm = 40.6 (1)° for conformer (I‐1), and P = 34.5 (2)° and τm = 41.4 (1)° for conformer (I‐2). Both conformers and the solvent molecule participate in the formation of a three‐dimensional pattern with a `chain'‐like arrangement of the conformers. The structure is stabilized by intermolecular O—H...O and O—H...N hydrogen bonds, together with weak C—H...O contacts.  相似文献   

10.
1,3‐Bis(ethylamino)‐2‐nitrobenzene, C10H15N3O2, (I), and 1,3‐bis(n‐octylamino)‐2‐nitrobenzene, C22H39N3O2, (II), are the first structurally characterized 1,3‐bis(n‐alkylamino)‐2‐nitrobenzenes. Both molecules are bisected though the nitro N atom and the 2‐C and 5‐C atoms of the ring by twofold rotation axes. Both display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, but no intermolecular hydrogen bonding. The nearly planar molecules pack into flat layers ca 3.4 Å apart that interact by hydrophobic interactions involving the n‐alkyl groups rather than by π–π interactions between the rings. The intra‐ and intermolecular interactions in these molecules are of interest in understanding the physical properties of polymers made from them. Upon heating in the presence of anhydrous potassium carbonate in dimethylacetamide, (I) and (II) cyclize with formal loss of hydrogen peroxide to form substituted benzimidazoles. Thus, 4‐ethylamino‐2‐methyl‐1H‐benzimidazole, C10H13N3, (III), was obtained from (I) under these reaction conditions. Compound (III) contains two independent molecules with no imposed internal symmetry. The molecules are linked into chains via N—H...N hydrogen bonds involving the imidazole rings, while the ethylamino groups do not participate in any hydrogen bonding. This is the first reported structure of a benzimidazole derivative with 4‐amino and 2‐alkyl substituents.  相似文献   

11.
The title compound {systematic name: 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐[6‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)hex‐1‐ynyl]pyrimidin‐2(1H)‐one}, C24H28N6O4, shows two conformations in the crystalline state, viz. (I‐1) and (I‐2). The pyrimidine groups and side chains of the two conformers are almost superimposable, while the greatest differences between them are observed for the sugar groups. The N‐glycosylic bonds of both conformers adopt similar anti conformations, with χ = −168.02 (12)° for conformer (I‐1) and χ = −159.08 (12)° for conformer (I‐2). The sugar residue of (I‐1) shows an N‐type (C3′‐endo) conformation, with P = 33.1 (2)° and τm = 29.5 (1)°, while the conformation of the 2′‐deoxyribofuranosyl group of (I‐2) is S‐type (C3′‐exo), with P = 204.5 (2)° and τm = 33.8 (1)°. Both conformers participate in hydrogen‐bond formation and exhibit identical patterns resulting in three‐dimensional networks. Intermolecular hydrogen bonds are formed with neighbouring molecules of different and identical conformations (N—H...N, N—H... O, O—H...N and O—H...O).  相似文献   

12.
Notwithstanding its simple structure, the chemistry of nitric oxide (NO) is complex. As a radical, NO is highly reactive. NO also has profound effects on the cardiovascular system. In order to regulate NO levels, direct therapeutic interventions include the development of numerous NO donors. Most of these donors release NO in a single high‐concentration burst, which is deleterious. N‐Nitrosated secondary amines release NO in a slow, sustained, and rate‐tunable manner. Two new precursors to sustained NO‐releasing materials have been characterized. N‐[2‐(3,4‐Dimethoxyphenyl)ethyl]‐2,4‐dinitroaniline, C16H17N3O6, (I), crystallizes with one independent molecule in the asymmetric unit. The adjacent amine and nitro groups form an intramolecular N—H…O hydrogen bond. The anti conformation about the phenylethyl‐to‐aniline C—N bond leads to the planes of the arene and aniline rings being approximately perpendicular. Molecules are linked into dimers by weak intermolecular N—H…O hydrogen bonds such that each amine H atom participates in a three‐center interaction with two nitro O atoms. The dimers pack so that the arene rings of adjacent molecules are not parallel and π–π interactions do not appear to be favored. N‐(4‐Methylsulfonyl‐2‐nitrophenyl)‐l ‐phenylalanine, C16H16N2O6S, (II), with an optically active center, also crystallizes with one unique molecule in the asymmetric unit. The l enantiomer was established via the configuration of the starting material and was confirmed by refinement of the Flack parameter. As in (I), there is an intramolecular N—H…O hydrogen bond between adjacent amine and nitro groups. The conformation of the molecule is such that the arene rings display a dihedral angle of ca 60°. Unlike (I), molecules are not linked via intermolecular N—H…O hydrogen bonds. Rather, the carboxylic acid H atom forms a classic, approximately linear, O—H…O hydrogen bond with a sulfone O atom. Pairs of molecules related by twofold rotation axes are linked into dimers by two such interactions. The packing pattern features a zigzag arrangement of the arene rings without apparent π–π interactions. These structures are compared with reported analogues, revealing significant differences in molecular conformation, intermolecular interactions, and packing that result from modest changes in functional groups. The structures are discussed in terms of potential NO‐release capability.  相似文献   

13.
The title compound [systematic name: 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐ethynylpyrimidin‐2(1H)‐one], C11H13N3O4, shows two conformations in the crystalline state. The N‐glycosylic bonds of both conformers adopt similar conformations, with χ = −149.2 (1)° for conformer (I‐1) and −151.4 (1)° for conformer (I‐2), both in the anti range. The sugar residue of (I‐1) shows a C2′‐endo envelope conformation (2E, S‐type), with P = 164.7 (1)° and τm = 36.9 (1)°, while (I‐2) shows a major C3′‐exo sugar pucker (C3′‐exo‐C2′‐endo, 3T2, S‐type), with P = 189.2 (1)° and τm = 33.3 (1)°. Both conformers participate in the formation of a layered three‐dimensional crystal structure with a chain‐like arrangement of the conformers. The ethynyl groups do not participate in hydrogen bonding, but are arranged in proximal positions.  相似文献   

14.
Molecules of the title compound, C13H8I2N2O3, are linked into C(4) chains by a single N—H⋯O=C hydrogen bond [H⋯O = 2.10 Å, N⋯O = 2.832 (5) Å and N—H⋯O = 140°]. Two independent two‐centre iodo–nitro interactions, both involving the same O atom but different I atoms [I⋯O = 3.205 (3) and 3.400 (3) Å, and C—I⋯O = 160.4 (2) and 155.7 (2)°], link the hydrogen‐bonded chains into bilayers.  相似文献   

15.
The crystal structure of 7‐nitro‐1H‐indazole, C7H5N3O2, an inhibitor of nitric oxide synthase, shows the existence of an intramolecular hydrogen bond between an O atom of the nitro group and the NH group of the indazole ring. The crystal packing consists of intermolecular hydrogen bonding and indazole?indazole interactions.  相似文献   

16.
The search for new tuberculostatics is important considering the occurrence of drug‐resistant strains of Mycobacterium tuberculosis . Three polymorphs of N ′‐(1,3‐dithiolan‐2‐ylidene)‐4‐nitrobenzohydrazide (a potentially tuberculostatic agent), C10H9N3O3S2, denoted (I1), (I2) and (I3), and the monohydrate of this compound, C10H9N3O3S2·H2O, (I4), have been characterized by single‐crystal X‐ray diffraction. The conformations of the molecules in all these structures are very similar. Structures (I1), (I2) and (I3) provide an example of packing polymorphism resulting from different intermolecular interactions.  相似文献   

17.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

18.
The structures of 4‐nitrobenzene‐1,2‐diamine [C6H7N3O2, (I)], 2‐amino‐5‐nitroanilinium chloride [C6H8N3O2+·Cl, (II)] and 2‐amino‐5‐nitroanilinium bromide monohydrate [C6H8N3O2+·Br·H2O, (III)] are reported and their hydrogen‐bonded structures described. The amine group para to the nitro group in (I) adopts an approximately planar geometry, whereas the meta amine group is decidedly pyramidal. In the hydrogen halide salts (II) and (III), the amine group meta to the nitro group is protonated. Compound (I) displays a pleated‐sheet hydrogen‐bonded two‐dimensional structure with R22(14) and R44(20) rings. The sheets are joined by additional hydrogen bonds, resulting in a three‐dimensional extended structure. Hydrohalide salt (II) has two formula units in the asymmetric unit that are related by a pseudo‐inversion center. The dominant hydrogen‐bonding interactions involve the chloride ion and result in R42(8) rings linked to form a ladder‐chain structure. The chains are joined by N—H...Cl and N—H...O hydrogen bonds to form sheets parallel to (010). In hydrated hydrohalide salt (III), bromide ions are hydrogen bonded to amine and ammonium groups to form R42(8) rings. The water behaves as a double donor/single acceptor and, along with the bromide anions, forms hydrogen bonds involving the nitro, amine, and ammonium groups. The result is sheets parallel to (001) composed of alternating R55(15) and R64(24) rings. Ammonium N—H...Br interactions join the sheets to form a three‐dimensional extended structure. Energy‐minimized structures obtained using DFT and MP2 calculations are consistent with the solid‐state structures. Consistent with (II) and (III), calculations show that protonation of the amine group meta to the nitro group results in a structure that is about 1.5 kJ mol−1 more stable than that obtained by protonation of the para‐amine group. DFT calculations on single molecules and hydrogen‐bonded pairs of molecules based on structural results obtained for (I) and for 3‐nitrobenzene‐1,2‐diamine, (IV) [Betz & Gerber (2011). Acta Cryst. E 67 , o1359] were used to estimate the strength of the N—H...O(nitro) interactions for three observed motifs. The hydrogen‐bonding interaction between the pairs of molecules examined was found to correspond to 20–30 kJ mol−1.  相似文献   

19.
Two polymorphs of (E,E)‐N,N′‐bis(4‐nitrobenzylidene)benzene‐1,4‐diamine, C20H14N4O4, (I), have been identified. In each case, the molecule lies across a crystallographic inversion centre. The supramolecular structure of the first polymorph, (I‐1), features stacking based on π–π interactions assisted by weak hydrogen bonds involving the nitro groups. The second polymorph, (I‐2), displays a perpendicular arrangement of molecules linked via the nitro groups, combined with weak C—H...O hydrogen bonds. Both crystal structures are compared with that of the carbon analogue (E,E)‐1,4‐bis[2‐(4‐nitrophenyl)ethenyl]benzene, (II).  相似文献   

20.
4,6‐Dinitro‐N,N′‐di‐n‐octylbenzene‐1,3‐diamine, C22H38N4O4, (I), 4,6‐dinitro‐N,N′‐di‐n‐undecylbenzene‐1,3‐diamine, C28H50N4O4, (II), and N,N′‐bis(2,4‐dinitrophenyl)octane‐1,8‐diamine, C20H24N6O8, (III), are the first synthetic meta‐dinitroarenes functionalized with long‐chain aliphatic amine groups to be structurally characterized. The intra‐ and intermolecular interactions in these model compounds provide information that can be used to help understand the physical properties of corresponding polymers with similar functionalities. Compounds (I) and (II) possess near‐mirror symmetry, with the octyl and undecyl chains adopting fully extended anti conformations in the same direction with respect to the ring. Compound (III) rests on a center of inversion that occupies the mid‐point of the central C—C bond of the octyl chain. The middle six C atoms of the chain form an anti arrangement, while the remaining two C atoms take hard turns almost perpendicular to the rest of the chain. All three molecules display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, with the same NH group forming a bifurcated intermolecular hydrogen bond to the nitro O atom of an adjacent molecule. In each case, these interactions link the molecules into one‐dimensional molecular chains. In (I) and (II), these chains pack so that the pendant alkyl groups are interleaved parallel to one another, maximizing nonbonded C—H contacts. In (III), the alkyl groups are more isolated within the molecular chains and the primary nonbonded contacts between the chains appear to involve the nitro groups not involved in the hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号