首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A simple switchable and tunable dual-wavelength passively mode-locked erbium-doped fiber ring laser based on nonlinear polarization rotation (NPR) effect is proposed and experimentally demonstrated. The NPR effect effectively induces wavelength- and intensity-dependent loss to readily implement stable dual-wavelength passively mode-locked operation. The wavelength switching and tuning of the dual-wavelength ultrashort pulse laser are achieved only by appropriately rotating the polarization controllers. The side-mode suppression ratio of the output pulse is larger than 41 dB over a wavelength-tuning range of 43.4 nm. Moreover, triple-wavelength ultrashort pulse can also be observed.  相似文献   

2.
We have demonstrated a simple ring cavity tunable multiwavelength Brillouin/Erbium fiber laser (MWBEFL), in which 70 m highly nonlinear photonic crystal fiber (HNL-PCF) is used as the Brillouin gain medium. The fiber laser utilizes recycling mechanism to enhance stimulated Brillouin scattering (SBS). The configuration that consists of only 3 optical components is easy to be integrated and improves the practicality. At the maximum 1480 nm pump power of 110 mW and the Brillouin pump power of 3 dBm, 10 stable output channels with more than 10 dB optical signal to noise ratio (OSNR) and 0.078 nm channel spacing could achieve 10 nm tuning ranges.  相似文献   

3.
A stable, incorporate and switchable dual-wavelength fiber laser with two fiber Bragg gratings written in a photosensitive and polarization-maintaining erbium-doped fiber directly, that is, without splices in the laser cavity, is proposed and demonstrated. Simultaneous dual-wavelength oscillation is achieved at room temperature with a wavelength spacing of 0.343 nm. The power fluctuation and wavelength shift of single-wavelength oscillations are measured to be less than 0.24 dB and 0.013 nm over 2 h. The wavelength switchability between single- and dual-wavelength oscillations is realized by altering the voltage upon the electrostrictive ceramic actuator.  相似文献   

4.
A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.  相似文献   

5.
A stable and narrow wavelength spacing multiwavelength erbium-doped fiber laser is proposed and demonstrated. The laser can produce simultaneous dual- and triple-wavelength lasing oscillations with a narrow wavelength spacing of less than 0.1 nm via using a single fiber Bragg gratings written in polarization-maintaining (PM) fiber. By adjusting polarization controller, the wavelength spacing of dual-wavelength lasing oscillations can be tuned to as small as 0.032 nm. The maximum amplitude variation for every lasing wavelength is less than 0.5 dB. The room-temperature operation principle is based on the polarization hole burning and deeply saturated effect in an ordinary erbium-doped fiber ring laser (EDFRL). The laser has the advantages of simple all-fiber configuration, low cost, high stability and operating at room temperature.  相似文献   

6.
A novel tunable microwave photonic notch filter using a phase-modulated dual-wavelength fiber laser is presented. A stable dual-wavelength erbium-doped fiber laser with a linear cavity is formed by a polarization-maintaining uniform fiber Bragg grating (PM-FBG) and a polarization maintaining linearly chirped fiber Bragg grating (PM-LCFBG), both of which were fabricated on a high-birefringence (Hi-Bi) fiber. It is found that a stable room-temperature dual-wavelength operation can be achieved due to the presence of two reflection peaks arising from the orthogonal states of polarization (SOP) of the PM-FBG. Experimental results show stable dual-wavelength lasing operation with a wavelength separation of ∼0.36 nm and a large optical signal-to-noise ratio (OSNR) of over 40 dB under room temperature. The dual-wavelength fiber laser is combined with a phase modulator and a segment of single-mode fiber (SMF) as a dispersive device to form a tunable microwave photonic notch filter. By stretching the PM-FBG to tune the wavelength separation of the dual-wavelength fiber laser, a tunable microwave photonic notch filter with various free spectral ranges (FSRs) and a rejection ratio greater than 35 dB was developed.  相似文献   

7.
A stable and broad bandwidth multiwavelength erbium-doped fiber laser is proposed and demonstrated successfully. A nonlinear optical loop mirror which induces wavelength-dependent cavity loss and behaves as an amplitude equalizer is employed to ensure stable room-temperature multiwavelength operation. Up to 50 wavelengths lasing oscillations with wavelength spacing of 0.8 nm within a 3-dB spectral range of 1562-1605 nm has been achieved. The measured power fluctuation of each wavelength is about 0.1 dB within a 2-h period.  相似文献   

8.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1598-5360
We experimentally demonstrated a new structure of a multiwavelength semiconductor optical amplifier (SOA) ring laser based on a fiber Sagnac loop filter that can generate up to 25 stable output lasing wavelengths at room temperature. By varying the length of a polarization-maintaining (PM) fiber within the Sagnac loop filter, the wavelength spacing between the output lasing wavelengths can be changed to a desired value. By tuning a polarization controller (PC) within the Sagnac loop filter, stable multiwavelength 1550-nm operation with up to 17 lasing lines within 3 dB power level variation and with a wavelength spacing of ∼0.8 nm was achieved. The optical signal-to-noise ratios (OSNRs) of all the lasing wavelengths are greater than 40 dB.  相似文献   

9.
We report on a widely tunable, pulsed laser system with narrow spectral linewidth based on a continuous wave ytterbium fiber oscillator, a pulse shaper and a power amplifier stage. The system is tunable from 1055 nm to 1085 nm and provides a maximum pulse energy of 155 μJ with a pulse duration of 1-5 μs. The linewidth is less than 2.7 GHz over the whole tuning range.  相似文献   

10.
We report a high-power dual-wavelength Yb-doped double-clad fiber laser based on a few-mode fiber Bragg grating (FMFBG). The FMFBG was fabricated by using a piece of fiber in a length of fiber with a cutoff wavelength of 1225 nm, which supported two modes at 1060 nm. The laser was pumped by a fiber pigtailed laser diode working at 915 nm. Single-wavelength, dual-wavelength and triple-wavelength laser oscillations were observed when the fiber laser operated under different low pump powers. However, stable dual-wavelength operation was achieved at higher pump power of 3.9 W and remained unchanged until the output power reached 5.67 W under the maximum available pump power of 10.7 W. The laser wavelengths were centered at 1059.12 and 1060.80 nm with a full-width at half-maximum of 37 and 43 pm, respectively. The signal-to-noise-ratio was greater than 50 dB and the beam quality factor (M2) was about 1.9.  相似文献   

11.
Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.  相似文献   

12.
We experimentally demonstrate a multiwavelength Brillouin-erbium fiber laser in two configurations; uni-directional and bi-directional propagation of Brillouin pump and Brillouin Stokes signals through an Erbium-doped fiber gain. The influence of these configurations on the performance of the output parameters in terms of lasing threshold, output channel generation and tuning range of the generated output channels are investigated. We discovered that there is a trade-off between these two fiber laser configurations. The uni-directional amplifier configuration provides greater tuning range of 46.8 nm against 23 nm at maximum Brillouin pump power of 2 mW and 1480-nm pump power of 130 mW. On the other hand, the bi-directional amplifier configuration provides 13 output channels against 6 output channels obtained from the uni-directional amplifier configuration at the same pumping powers. Nevertheless, the bi-directional amplifier configuration requires much lower pump power to initiate lasing.  相似文献   

13.
We have demonstrated an adjustable double-clad Yb3+-doped fiber laser using a double-pass Mach-Zehnder interferometer. The laser is adjustable over a range of 40 nm from 1064 nm to 1104 nm. By adjusting the state of the polarization controller, which is placed in the double-pass Mach-Zehnder interferometer, we obtained central lasing wavelengths that can be accurately tuned with controllable spacing between different tunable wavelengths. The laser has a side mode suppression ratio of 42 dB, the 3 dB spectral width is less than 0.2 nm, and the slope efficiencies at 1068 nm, 1082 nm and 1098 nm are 23%, 32% and 26%, respectively. In addition, we have experimentally observed tunable multi-wavelengths lasing output.  相似文献   

14.
We propose and demonstrate experimentally a stabilized and wavelength-selective erbium-doped fiber ring laser in single-longitudinal-mode operation with Fabry-Perot laser diode (FP-LD) and using a tunable bandpass filter (TBF) inside and outside a Sagnac ring cavity. The side-mode suppression ratios of 21 dB and 36.5 dB and the output power of -3.6 dB m and -8.7 dB m in the wavelengths of 1524.45-1562.35 nm and 1531.07-1562.35 nm with the tuning step of 1.4 nm can be achieved when the TBF outside and inside Sagnac loop, respectively. The output wavelength variation of zero and the output power fluctuation of <0.1 dB are also obtained. Moreover, the transmission efficiency of the ring laser has also been performed experimentally under a 1.25, 2.5 and 10 Gb/s external modulation, respectively.  相似文献   

15.
Dong Xue 《Optics Communications》2010,283(6):1059-1061
We present an all-fiber design for a single polarization Yb-doped fiber laser with all-fiber connections spliced. Single polarization with a high extinction ratio was achieved by the design of a laser cavity consisting of a fiber Bragg grating inscribed on a single-polarization fiber as a high reflective mirror and a piece of end-cleaved single-polarization fiber as an output coupler. The fiber laser operates at 1063.25 nm with an output power of 1.7 W, an optical signal- to-noise ratio of 70 dB and a narrow bandwidth of 54 pm. The laser output has a polarization extinction ratio of 700:1 or 28 dB, and a very stable power output.  相似文献   

16.
We report the development of a ring tunable fiber laser based on tunable fiber Bragg gratings (TFBG) integrated with an optical circulator. The TFBG is embedded inside a 3-piont bending device for wavelength tuning. The tunable laser operating in the C-band has power variation, tuning resolution, tuning range and laser line width of ±0.5 dB, 0.5 nm, 25.0 nm and less than 0.05 nm, respectively. As 40 mW of pump power is used, the ring tunable laser has a side mode suppression ratio of 60 dB and a power conversion efficiency of 25%. These specifications ensure the high-quality operation of a tunable laser.  相似文献   

17.
A widely tunable and stable erbium-doped fiber laser based on four-wave mixing effect in a highly nonlinear fiber is proposed and experimentally demonstrated. By adjusting reflected power from a dual-selective element, the ring laser is switchable between single- and dual-wavelength operations. The tuning range of the single laser is 22.78 nm, from 1,542.07 to 1,564.85 nm, while the wavelength spacing of the dual-wavelength can be continuously tuned from 0.52 to 22.78 nm. The laser is stable with output peak power fluctuation of <1 dB in 30-min interval.  相似文献   

18.
A simple, continuously tunable dual-wavelength erbium-doped fiber ring laser (TDEDFL) structure for applications in high-speed communication systems is proposed and experimentally demonstrated. The dual-wavelength tuning range is 58 nm covering both the C-band and L-band from 1547 to 1605 nm. We can not only obtain a 45% improvement over previously reported tuning ranges, but also tune the wavelength of each lasing output independently. The power equalization of the dual-wavelength outputs is less than 1.5 dB. We obtain extremely stable power variation and wavelength fluctuation at room temperature. Using this fiber laser, a 10-Gb/s data transmission over a 25-km single-mode fiber (SMF) can be made available with a power penalty of 0.5 dB is demonstrated with this laser.  相似文献   

19.
A stable and compact multi-wavelength Brillouin fiber laser (BFL) operating at room temperature is experimentally demonstrated using a 100 m long photonic crystal fiber (PCF) in conjunction with a figure-of-eight configuration. At a Brillouin pump (BP) level of 15.3 dBm, 7 simultaneous lines with 20 GHz or 0.16 nm line spacing is achieved by removing the odd-order Stokes lines. The anti-Stokes lines are also generated via four wave mixing process in the laser cavity. Compared with the Erbium-based multi-wavelength laser, this BFL has advantages in term of channel spacing and flexibility in the choice of operating wavelength. The output spectrum of the proposed BFL can be tuned by 80 nm, dependent on the availability of an appropriate BP source. The multi-wavelength BFL shows a good stability with power fluctuations of less than 0.5 dB over more than 3 h.  相似文献   

20.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1611-6860
A stable dual-wavelength erbium-doped fiber laser with a linear cavity is formed by a polarization-maintaining uniform fiber Bragg grating (PM-FBG) and a polarization-maintaining linearly chirped fiber Bragg grating (PM-LCFBG), both of which were fabricated on a high-birefringence (Hi-Bi) fiber. Experimental results show stable dual-wavelength lasing operation with a wavelength separation of ∼0.22 nm, which can be tuned down to as small as 0.05 nm and a large optical signal-to-noise ratio (OSNR) of over 40 dB under room-temperature. Microwave signal at frequency of 9.41, 18.03 and 27.46 GHz is achieved by heterodyned the output lasing wavelengths on a photodetector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号