首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Two protocols for deterministic secure quantum communication (DSQC) using GHZ-like states have been proposed. It is shown that one of these protocols is maximally efficient and that can be modified to an equivalent protocol of quantum secure direct communication (QSDC). Security and efficiency of the proposed protocols are analyzed and compared. It is shown that dense coding is sufficient but not essential for DSQC and QSDC protocols. Maximally efficient QSDC protocols are shown to be more efficient than their DSQC counterparts. This additional efficiency arises at the cost of message transmission rate.  相似文献   

2.
量子直接通信   总被引:1,自引:0,他引:1       下载免费PDF全文
李熙涵 《物理学报》2015,64(16):160307-160307
量子直接通信是量子通信中的一个重要分支, 它是一种不需要事先建立密钥而直接传输机密信息的新型通信模式. 本综述将介绍量子直接通信的基本原理, 回顾量子直接通信的发展历程, 从最早的高效量子直接通信协议、两步量子直接通信模型、量子一次一密直接通信模型等, 到抗噪声的量子直接通信模型以及基于单光子多自由度量子态及超纠缠态的量子直接通信模型, 最后介绍量子直接通信的研究现状并展望其发展未来.  相似文献   

3.
This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises, respectively. The two QSDC protocols are constructed from four-qubit DF states which consist of two logical qubits. The receiver simply performs two Bell state measurements (rather than four-qubit joint measurements) to obtain the secret message. The protocols have qubit effciency twice that of ...  相似文献   

4.
Quantum secure direct communication(QSDC)is a unique technique,which supports the secure transmission of confidential information directly through a quantum channel without the need for a secret key and for ciphertext.Hence this secure communication protocol fundamentally differs from its conventional counterparts.In this article,we report the first measurement-deviceindependent(MDI)QSDC protocol relying on sequences of entangled photon pairs and single photons.Explicitly,it eliminates the security loopholes associated with the measurement device.Additionally,this MDI technique is capable of doubling the communication distance of its conventional counterpart operating without using our MDI technique.We also conceive a protocol associated with linear optical Bell-basis measurements,where only two of the four Bell-basis states could be measured.When the number of qubits in a sequence reduces to 1,the MDI-QSDC protocol degenerates to a deterministic MDI quantum key distribution protocol.  相似文献   

5.
顾斌  黄余改  方夏  张成义 《中国物理 B》2011,20(10):100309-100309
We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.  相似文献   

6.
Recently, Hwang et al. (Eur. Phys. J. D 61:785, 2011) and Yuan et al. (Int. J. Theor. Phys. 50:2403, 2011) have proposed two efficient protocols of secure quantum communication using 3-qubit and 4-qubit symmetric W state respectively. These two dense coding based protocols are generalized and their efficiencies are considerably improved. Simple bounds on the qubit efficiency of deterministic secure quantum communication (DSQC) and quantum secure direct communication (QSDC) protocols are obtained and it is shown that dense coding is not essential for designing of maximally efficient DSQC and QSDC protocols. This fact is used to design maximally efficient protocols of DSQC and QSDC using 3-qubit and 4-qubit W states.  相似文献   

7.
Jia-Wei Ying 《中国物理 B》2022,31(12):120303-120303
The one-step quantum secure direct communication (QSDC) (Sci. Bull. 67, 367 (2022)) can effectively simplify QSDC's operation and reduce message loss. For enhancing its security under practical experimental condition, we propose two measurement-device-independent (MDI) one-step QSDC protocols, which can resist all possible attacks from imperfect measurement devices. In both protocols, the communication parties prepare identical polarization-spatial-mode two-photon hyperentangled states and construct the hyperentanglement channel by hyperentanglement swapping. The first MDI one-step QSDC protocol adopts the nonlinear-optical complete hyperentanglement Bell state measurement (HBSM) to construct the hyperentanglement channel, while the second protocol adopts the linear-optical partial HBSM. Then, the parties encode the photons in the polarization degree of freedom and send them to the third party for the hyperentanglement-assisted complete polarization Bell state measurement. Both protocols are unconditionally secure in theory. The simulation results show the MDI one-step QSDC protocol with complete HBSM attains the maximal communication distance of about 354 km. Our MDI one-step QSDC protocols may have potential applications in the future quantum secure communication field.  相似文献   

8.
刘志昊  陈汉武 《物理学报》2017,66(13):130304-130304
最近,一种基于Bell态粒子和单光子混合的量子安全直接通信方案[物理学报65 230301(2016)]被提出.文章宣称一个量子态可以编码3比特经典信息,从而使得协议具有很高的信息传输效率.不幸的是,该协议存在信息泄露问题:编码在单光子上的3比特经典信息有2比特被泄露,而编码在Bell态上的3比特经典信息有1比特被泄露,所以它不是一个安全的直接量子通信方案.在保留原协议思想且尽可能少地更改原协议的基础上,我们提出一种改进的消息编码规则,从而解决信息泄露问题,使之成为一个高效、安全的量子通信协议.衷心希望研究者能对量子安全通信协议中信息泄露问题引起足够重视,设计真正安全的量子通信协议.  相似文献   

9.
杨静  王川  张茹 《中国物理 B》2010,19(11):110311-110311
An improved quantum secure direct communication (QSDC) protocol is proposed in this paper.Blocks of entangled photon pairs are transmitted in two steps in which secret messages are transmitted directly.The single logical qubits and unitary operations under decoherence free subspaces are presented and the generalized Bell states are constructed which are immune to the collective noise.Two steps of qubit transmission are used in this protocol to guarantee the security of communication.The security of the protocol against various attacks are discussed.  相似文献   

10.
黄伟  温巧燕  贾恒越  秦素娟  高飞 《中国物理 B》2012,21(10):100308-100308
We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypting protocols,our two protocols are based on channel-encryption.In both schemes,two authorized users first share a sequence of EPR pairs as their reusable quantum key.Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel.In theory,the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks.For checking eavesdropping,the two parties only need to perform two-particle measurements on the decoy states during each round.Finally,we make a security analysis of our two protocols and demonstrate that they are secure.  相似文献   

11.
Quantum secure direct communication is the direct communication of secret messages without need for establishing a shared secret key first. In the existing schemes, quantum secure direct communication is possible only when both parties are quantum. In this paper, we construct a three-step semiquantum secure direct communication (SQSDC) protocol based on single photon sources in which the sender Alice is classical. In a semiquantum protocol, a person is termed classical if he (she) can measure, prepare and send quantum states only with the fixed orthogonal quantum basis {|0〉, |1〉}. The security of the proposed SQSDC protocol is guaranteed by the complete robustness of semiquantum key distribution protocols and the unconditional security of classical one-time pad encryption. Therefore, the proposed SQSDC protocol is also completely robust. Complete robustness indicates that nonzero information acquired by an eavesdropper Eve on the secret message implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. In the proposed protocol, we suggest a method to check Eves disturbing in the doves returning phase such that Alice does not need to announce publicly any position or their coded bits value after the photons transmission is completed. Moreover, the proposed SQSDC protocol can be implemented with the existing techniques. Compared with many quantum secure direct communication protocols, the proposed SQSDC protocol has two merits: firstly the sender only needs classical capabilities; secondly to check Eves disturbing after the transmission of quantum states, no additional classical information is needed.  相似文献   

12.
赵学亮  李俊林  牛鹏皓  马鸿洋  阮东 《中国物理 B》2017,26(3):30302-030302
Quantum secure direct communication(QSDC) is an important branch of quantum cryptography. It can transmit secret information directly without establishing a key first, unlike quantum key distribution which requires this precursory event. Here we propose a QSDC scheme by applying the frequency coding technique to the two-step QSDC protocol, which enables the two-step QSDC protocol to work in a noisy environment. We have numerically simulated the performance of the protocol in a noisy channel, and the results show that the scheme is indeed robust against channel noise and loss. We also give an estimate of the channel noise upper bound.  相似文献   

13.
杨宇光  温巧燕  朱甫臣 《中国物理》2007,16(7):1838-1842
In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein--Podolsky--Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the `ping--pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.  相似文献   

14.
控制的量子隐形传态和控制的量子安全直接通信   总被引:6,自引:0,他引:6       下载免费PDF全文
高亭  闫凤利  王志玺 《中国物理》2005,14(5):893-897
我们提出了一个控制的量子隐形传态方案。在这方案中,发送方Alice 在监督者Charlie的控制下以他们分享的三粒子纠缠态作为量子通道将二能级粒子未知态的量子信息忠实的传给了遥远的接受方Bob。我们还提出了借助此传态的控制的量子安全直接通信方案。在保证量子通道安全的情况下, Alice直接将秘密信息编码在粒子态序列上,并在Charlie控制下用此传态方法传给Bob。Bob可通过测量他的量子位读出编码信息。由于没有带秘密信息的量子位在Alice 和Bob之间传送,只要量子通道安全, 这种通信不会泄露给窃听者任何信息, 是绝对安全的。这个方案的的特征是双方通信需得到第三方的许可。  相似文献   

15.
A quantum steganography protocol with a large payload is proposed based on the dense coding and the entanglement swapping of the Greenberger-Horne-Zeilinger (GHZ) states. Its super quantum channel is formed by building up a hidden channel within the original quantum secure direct communication (QSDC) scheme. Based on the original QSDC, secret messages are transmitted by integrating the dense coding and the entanglement swapping of the GHZ states. The capacity of the super quantum channel achieves six bits per round covert communication, much higher than the previous quantum steganography protocols. Its imperceptibility is good, since the information and the secret messages can be regarded to be random or pseudo-random. Moreover, its security is proved to be reliable.  相似文献   

16.
Quantum secure direct communication via partially entangled states   总被引:1,自引:0,他引:1       下载免费PDF全文
满忠晓  夏云杰 《中国物理》2007,16(5):1197-1200
We present in this paper a quantum secure direct communication (QSDC) protocol by using partially entangled states. In the scheme a third party (Trent) is introduced to authenticate the participants. After authentication, Alice can directly, deterministically and successfully send a secret message to Bob. The security of the scheme is also discussed and confirmed.  相似文献   

17.
基于单光子的单向量子安全通信协议   总被引:8,自引:0,他引:8       下载免费PDF全文
权东晓  裴昌幸  刘丹  赵楠 《物理学报》2010,59(4):2493-2497
提出了基于单光子的单向量子安全通信方案.发送方在对信息序列进行编码操作之前首先将其和随机序列进行异或操作并插入校验序列.接收方收到光子后对其进行延迟,此后发送方公布编码基从而使接收方在正确的基下进行测量.接着双方通过校验序列判断信道的安全性,如果信道安全,则发送方公布接收方有测量结果的位置所对应的随机序列,接收方由此恢复出信息序列;如果信道不安全,窃听者所获得的只是随机的发送序列,信息序列仍然是安全的.此协议与双向通信协议相比具有传输效率高、 易于实现等优点. 关键词: 量子密码 量子安全通信 单光子 单向通信  相似文献   

18.
We propose two schemes for quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) over collective dephasing noisy channel. In our schemes, four special two-qubit states are used as the quantum channel. Since these states are unchanged through the collective dephasing noisy channel, the effect of the channel noise can be perfectly overcome. Simultaneously, the security against some usual attacks can be ensured by utilizing the various checking procedures. Furthermore, these two schemes are feasible with present-day technique.  相似文献   

19.
We present two robust quantum secure direct communication (QSDC) schemes with a quantum one-time pad over a collective-noise channel. Each logical qubit is made up of two physical qubits and it is invariant over a collective-noise channel. The two photons in each logical qubit can be produced with a practically entangled source, i.e., a parametric down-conversion source with a beta barium borate crystal and a pump pulse of ultraviolet light. The information is encoded on each logical qubit with two logical ...  相似文献   

20.
We generalize the unitary-operation-based deterministic secure quantum communication (UODSQC) model (protocol) to describe the conventional deterministic secure quantum communication (DSQC) protocols in which unitary operations are usually utilized for encoding or decoding message. However, it is found that unitary operation for message encoding or decoding is not required and can be replaced with classical operation in DSQC. So the classical-operation-based deterministic secure quantum communication (CODSQC) model (protocol) is put forward. Then the rigorous mathematical analysis to explain the reason why classical operations can replace unitary operations to encode or decode secret deterministic message is given. Although unitary operations are still possibly needed in the whole communication of CODSQC model (protocol), those used for message encoding or decoding are omitted and replaced with classical operations in CODSQC model (protocol). As a result, the CODSQC model (protocol) is simpler and even more robust than the UODSQC one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号