首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of palladium (Pd) films has been investigated using KrF or ArF laser irradiation on a Pd acetate (PdAc) coated substrate. A crystalline Pd film could be obtained by KrF laser irradiation (fluence = 15-40 mJ/cm2) but PdAc was found to remain in the film. An increase in the substrate temperature to 423 K decreased the inclusion of the unreacted precursor and produced a better crystallinity. An amorphous and uniform Pd film composed of very fine particles was found to be formed by this process under reduced pressure, which is probably due to the preferential ablation of the crystalline nuclei. ArF laser irradiation is more effective for decomposing the PdAc and for producing a Pd film with a better crystallinity and no (or smaller) organic inclusion.  相似文献   

2.
Two dimensional (2D) Pd nanosheets supported on reduced graphene oxide (Pd/rGO) were prepared through a sonochemical routine induced by cetyltrimethylammonium bromide (CTAB). Coral-like porous Pd nanosheets (Pd/rGO-u) were obtained under the sonication condition (25 kHz, 600 W, ultrasonic transducer), while square Pd nanosheets (Pd/rGO-c) were produced via traditional chemical reduction. The size of Pd nanosheets of Pd/rGO-u and Pd/rGO-c are 69.7 nm and 59.7 nm, and the thickness are 4.6 nm and 4.4 nm, respectively. The carrier GO was proved to be partially reduced to rGO with good electrical conductivity and oxygen-containing groups facilitated a good dispersion of Pd nanosheets. The interaction between GO and CTAB made the alkyl chain assembles to a 2D lamella micelles which limit the growth of Pd atoms resulting in the formation of 2D nanosheets. A high ultrasonic power promotes the reduction and the formation of porous structure. Additionally, Pd/rGO-u exhibited a favorable electrocatalytic performance toward oxygen reduction reaction (ORR) in alkaline condition, which provided a potential synthetic strategy assisted by sonication for high-performance 2D materials.  相似文献   

3.
We use density functional theory (DFT) with the generalized gradient approximation (GGA) and the revised Perdew-Burke-Ernzerhoff (rPBE) functional, to study the surface composition of the (1 1 1) and (1 0 0) dilute Pd/Au alloy. We find that the energy of Pd atoms is lower when they substitute an Au atom in the bulk than when they substitute an Au atom in the surface layer, or when they are adsorbed on the surface. Whether they are in the surface layer or in the bulk, the Pd atoms interact very weakly with each other. CO adsorbs on the Pd atom in the surface layer and the energy of this complex is lower than that of CO in gas and Pd atom in the bulk. The interaction between the PdCO complexes formed when CO adsorbs on a Pd atom imbedded in the surface layer, is also negligible. We use these energies, equilibrium thermodynamics, and a simple lattice-gas model to examine the equilibrium composition of the surface layer, as a function of temperature, CO pressure and the Pd/Au ratio. We find that the surface Pd concentration for a nanoparticle of an Au/Pd alloy differs from that in a bulk sample. The difference is due mainly to the fact that in a nanoparticle the migration of Pd atoms to the surface depletes the bulk concentration while in a large sample; the bulk provides an infinite source of Pd atoms to populate the surface sites. This system is of interest because Pd/Au alloys are selective catalysts for vinyl acetate synthesis when the Pd concentration on the surface is very low.  相似文献   

4.
We have investigated the structure and morphology of Co and Pd clusters grown at room temperature on an alumina film on NiAl(1 1 0) by scanning tunneling microscopy, low energy ion scattering and Auger electron spectroscopy. We have also studied the clusters after annealing to 300 °C and Pd clusters deposited at 300 °C. Mixed Co-Pd clusters obtained by sequential deposition at room temperature were also studied. Pure Co deposited at room temperature forms a single type of clusters, most or all of them with close-packed planes parallel to the oxide surface. Their shape can be approximated by truncated spheres with a high contact angle of 115-125°. These clusters are stable upon annealing up to 300 °C.Pd clusters deposited at room temperature grow in two different modes. At the reflection domain boundaries the clusters grow in their thermodynamically favorable shape. The clusters do not have a single crystallographic orientation and their shape can be approximated by a truncated sphere with a high contact angle of about 110°, especially at very low coverages (below 0.05 ML). At the antiphase domain boundaries, the Pd clusters grow in (1 1 1) orientation and on some of them small (1 1 1) facets appear at their tops already at low coverages. For higher coverages of Pd, the majority of Pd clusters are rather flat with a large Pd(1 1 1) facet on top. The clusters’ shape at the antiphase domain boundaries differs from the thermodynamically favorable one, due to kinetic limitations, especially at higher coverages. Annealing the Pd clusters to 300 °C leads to re-structuring of these Pd clusters. They transform into higher and more rounded clusters and a thin disordered alumina film is formed on top of the clusters. When Pd is deposited at 300 °C, about 16% of the Pd clusters have a steep slope and rounded tops. The rest of the Pd forms lower clusters, goes subsurface and is covered by a disordered alumina film. When Co and Pd are deposited sequentially, Pd covers the Co clusters forming a shell. The resulting mixed clusters are still truncated spheres with a lowered contact angle. For deposition in the reverse order (first Pd and then Co) we found that Co forms an alloy with Pd already at room temperature.  相似文献   

5.
The epitaxial growth of Pd adlayers electrochemically deposited onto Au(1 0 0) has been studied by LEED, RHEED and AES. For the first 6 ML, the Pd deposits grow pseudomorphically on Au(1 0 0) with a lateral expansion of 4.5% with respect to bulk Pd. The strain in the expanded commensurate (1 × 1) Pd layers on Au(1 0 0) begins to be relieved at the Pd coverage between 6 and 9 ML range by formation of a compressed Pd film with respect to Au(1 0 0) surface and the compression increases continuously with thickness. At ca. 20 ML Pd the lattice constant of the film approaches to the bulk Pd and three-dimensional Pd islands develop since around 30 ML coverage. No superstructure due to the Pd-Au surface alloy can be found for coverages from monolayer up to 30 ML Pd on Au(1 0 0). A c(2 × 2) phase has been observed on the Pd-deposited Au(1 0 0) electrodes, which is ascribed to an ordered Cl adlayers adsorbed on Pd adlayers rather than a Pd-Au surface alloy.  相似文献   

6.
We have fabricated ultra-nanoparticulate model catalysts of Pd on TiO2(1 1 0) using metal vapour deposition (MVD) to form particles in the size range 1-50 nm, which can be imaged at very high spatial resolution (and in some cases at atomic resolution) using scanning tunnelling microscopy (STM). Using these methods we are able to identify the atomic level mechanism responsible for certain phenomena in catalysis, for which molecular level models have previously been proposed from macroscopic measurements. In this paper we address two such phenomena, namely spillover and the so-called strong metal-support interaction (SMSI) effect. Oxygen spillover from Pd particles to the titania support occurs due to the fast adsorption of oxygen on Pd compared with titania, and is driven by reaction with Ti3+ ions in the vicinity of the particles. The SMSI state is identified at atomic resolution as being due to the appearance of Ti at the surface of the Pd particles. These Ti layers are partially oxidised and form very well defined structures of two main types—a rectangular lattice and hexagonal unit cells of large dimension. These layers passivate the surface for the adsorption of CO.  相似文献   

7.
The emission spectra of the lanthanide chelates enable them to act as a donor for several acceptors emitting at different wavelengths. Fluorescence resonance energy transfer between terbium(III) chelate labeled antibody Fab fragment (donor) and a 17β-estradiol conjugated to Alexa Fluor 488, 555, 594 or 680 (acceptor) was employed to study the functionality of the terbium(III) chelate as an efficient donor for several acceptors emitting from green to far-red. During measurement, the sensitized emission of the acceptor was measured at acceptor specific wavelength. All the tested dyes proved to be efficient acceptors, and they were successfully used in the competitive homogeneous E2 assay. The highest signal to background ratio and the best assay performance was obtained with Alexa Fluor 680, due to the very low donor emission background at the far-red area. In addition, the sensitized emission of both Alexa Fluor 488 and 680 could be measured simultaneously without significant cross talk.  相似文献   

8.
Palladium–vanadium (Pd/V) alloy nanoparticles stabilized with n-pentyl isocyanide were prepared as new hydrogen storage materials by a facile polyol-based synthetic route with tetraethylene glycol and NaOH at 250 °C. The size distribution of the nanoparticles thus obtained featured two peaks at 4.0 ± 1.1 and 1.4 ± 0.3 nm in diameter, which were the mixture of Pd/V alloy and Pd nanoparticles. The ratio between the number of Pd/V and that of Pd nanoparticles was 51:49, and the Pd:V ratio of the overall product was 9:1 in wt%, indicating that the 4.0 nm Pd/V nanoparticles were composed of 81% Pd and 19% V. The inclusion of vanadium caused the increase in the d-spacing and thus expansion of lattice constant. A rapid increase in hydrogen content at low H2 pressures was observed for the Pd/V nanoparticles, and a 0.47 wt% H2 adsorption capacity was achieved under a H2 pressure of 10 MPa at 303 K. Hydrogen storage performances of Pd/V alloy nanoparticles was superior compared with Pd nanoparticles.  相似文献   

9.
Pulsed laser photodeposition from amorphous selenium aqueous colloid solutions using ArF laser radiation at a wavelength of λ = 193 nm has been investigated. Nanometer thick layers were obtained on UV transparent silica substrates in contact with the solution for various photodeposition parameters. Amorphous Se layers, 20 nm thick, were obtained typically by 40 laser pulses of 30 ns duration with a fluence of 50 mJ/cm2. Deposition thresholds for depositing 1 nm thick layers were as low as 5 pulses. The deposited nanometer thin surface morphology was analyzed by Evanescent Field Optical Microscopy, Scanning Electron Microscopy and Atomic Force Microscopy. The nanometer thicknesses were evaluated by utilizing the differential evanescent light pattern emanating from the substrates.  相似文献   

10.
Electroless nickel plating on APTHS modified wood veneer for EMI shielding   总被引:3,自引:0,他引:3  
A new activation process was developed for electroless plating to prepare wood-based EMI shielding material. Pd(II) was adsorbed on a wood surface modified with γ-aminopropyltrihydroxysilane (APTHS) formed by the hydrolysis of γ-aminopropyltriethoxysilane (APTES). After reduction of Pd(II), electroless plating was successfully initiated and an Ni-P coating was deposited on the wood veneer. The activation process and resulting coating were characterized by XPS, SEM-EDS and XRD. The metal deposition, surface resistivity and electromagnetic shielding effectiveness were measured. XPS analysis proved that Pd(II) was bonded to the amino group of APTHS and was reduced to Pd(0). The Ni-P coating was uniform, compact and continuous, and consisted of 3.39 wt.% phosphorus and 96.61 wt.% nickel. XRD analysis indicated that the coating was crystalline, which is thought to be related to the low phosphorus content. The plated birch veneers exhibited electromagnetic shielding effectiveness greater than 60 dB in the frequency range 10 MHz-1.5 GHz.  相似文献   

11.
This work deals with the study of photodeposition (PD) of gold nanoparticles (AuNPs) on TiO2 by using different illumination sources, Medium pressure Mercury lamp (ML), Solar Simulator equipped with AM 1.5 (SL) and Tungsten lamp (WL). Different particle size of AuNPs on TiO2 were obtained by photodeposition method under different illumination sources, which clearly proves the influence of light source on the synthesis of Au–TiO2. The plasmonic activity of Au–TiO2 photocatalyst for water splitting reaction was observed to be strongly influenced by the particle size of Au as well as illumination source. Amongst the three different illumination sources used, smallest particle size for AuNP–TiO2 were observed under ML followed by SL and WL, as revealed by TEM analysis. Different illumination sources were also investigated to evaluate the activity of Au–TiO2 samples thus prepared under different illumination conditions. The order of hydrogen evolution rate (HER) observed for Au–TiO2 with different source of illuminations is ML > SL > WL. The highest HER of 1709 μmol/h was observed for Au–TiO2, which was synthesized and evaluated under ML irradiation. This may be explained on the basis of reduced catalytic activity and photothermal effect of Au nanoparticles with increasing particle size.  相似文献   

12.
Oxidation and deoxidation of a Pd membrane was conducted in a quartz tube oven in a temperature range of 23-500 °C. The micromorphology and chemical composition of the Pd membrane surface was characterized using scanning electronic microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Micropores and PdO began to form on the Pd membrane surface after oxidation at 240 °C for 1 h and their quantity increased gradually with increasing temperature. A rough Pd membrane surface was obtained when the temperature rose to 500 °C. The PdO on the Pd membrane surface was completely deoxidized once more using H2 at room temperature, but the rough surface morphology caused by oxidation remained. The deuterium permeability of the Pd membrane was tested using special equipment in the China National Key Laboratory and the results indicated that the rough Pd membrane surface had higher deuterium permeability than the original membrane. The improved deuterium permeability could be attributed to the higher Pd membrane surface area, which provided deuterium atoms with more adsorption sites and dissociation sites.  相似文献   

13.
Measurements of the magnetic susceptibility of AgPd alloys with Fe and Mn impurities have been performed at temperatures from 1.4 K to 300 K. Alloys with 5 and 10 at.% Pd, 2 and 6 at. ppm Fe and with Mn concentrations in the range 10 to 7,000 at. ppm were investigated. The temperature variation of the impurity susceptibility was analysed according to a Curie-Weiss law. The effective moment for Fe varies with the Pd concentration, which is interpreted as due to interactions between near neighbour Fe and Pd atoms. These interactions tend to lower the characteristic temperature of single Fe impurities and induce a spin on the Pd atom ferromagnetically coupled to the Fe spin. InAgPdMn one finds no such induced moment on the Pd atoms. The effective momentµ eff =(5.36±0.10)µ B per Mn atom and the Curie-Weiss temperature=(0.08±0.09) K are independent of Pd as well as Mn concentrations.µ eff is slightly higher than for Mn in very diluteAgMn, which may be due to a different polarisation of the conduction electron gas around the impurities.  相似文献   

14.
This paper presents a report on experimental results of depth distributions of deuterium ions implanted with 25 keV energy at a fluence interval of (1.2–2.3) × 1022 m−2 into samples of pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd alloys (Pd-Ag, Pd-Pt, Pd-Ru, Pd-Rh). The post-treatment depth distributions of deuterium and hydrogen atoms were measured within a few hours after implantation with the use of elastic recoil detection (ERD) analysis. After three months the measurements were repeated. The comparison of the obtained results in both series of studies allowed us to make an important observation of the desorption rates of implanted deuterium atoms from pure metals and diluted Pd alloys. The maximum measured concentrations of deuterium atoms in pure Zr and Ti foils with relatively small desorption rate of deuterium atoms within three months after implantation were observed. Also a very high spreading of deuterium atom distributions was observed in all the measured pure metals and alloys. It can be explained by the large diffusion coefficients of deuterium and extremely fast kinetics.  相似文献   

15.
Pd nanocluster seeds were formed on a soft magnetic underlayer (SUL) using an electrochemical substitution reaction, and were utilized as an intermediate layer for a Co/Pd multilayered ([Co/Pd]n) perpendicular magnetic recording medium. A CoNiFeB film prepared with electroless deposition was used as SUL, which was immersed into a PdCl2 solution for the formation of Pd seeds. The Pd seeds were found to effectively reduce the size of magnetic domains in the [Co/Pd]n film deposited on them. The optimization of the concentration of the PdCl2 solution and the use of the pretreatment process with a SnCl2 solution were effective to obtain the smooth SUL surface with fine Pd seeds as small as 5 nm. The 20 nm-thick [Co/Pd]n film deposited on the optimized Pd seeds/CoNiFeB SUL exhibited a high coercivity of 7.8 kOe and a small magnetic domain size of 69 nm. These results indicated that the combination of the Pd seeds and the electroless-deposited SUL was desirable in terms of the improvement not only in the magnetic properties of [Co/Pd]n media but also in the mass productivity of the underlayer.  相似文献   

16.
Pd nanoparticles with uniform, self-assembled pompon-like nanostructure were synthesized by thermal decomposition of palladium acetate under microwave irradiation with methyl isobutyl ketone (MIBK) as a solvent in the presence of a little amount of ethylene glycol (EG) and KOH without using any special stabilizers. The as-synthesized Pd nano-pompons were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray powder diffraction. The results show that the as-prepared Pd nano-pompons with the average diameters in the range of 28–81 nm were self-assemblies organized by hundreds of smaller primary nanoparticles with an average dimension of about 2.4 nm. The sizes of Pd nano-pompons can be well controlled by adjusting the concentration of palladium acetate. A little amount of EG and KOH also plays an important role in controlling the size, uniformity and dispersion of Pd nano-pompons. The Pd nano-pompons can be easily supported on γ-Al2O3 and their catalytic activity was examined preliminarily.  相似文献   

17.
The structure of nanoporous carbon samples (prepared from silicon and boron carbides) with incorporated palladium clusters was studied. X-ray and electron diffraction studies show that most Pd clusters have an fcc lattice. Using small-angle X-ray scattering measurements, the metal cluster sizes are determined under certain assumptions. The sizes are not very close to the cluster sizes (4–14 nm) that are found from photomicrographs obtained using a transmission electron microscope (TEM). The difference is likely due to the local character of the TEM measurements. Apart from relatively coarse clusters of the sizes indicated above, the samples contain very small clusters, which are smaller in size than a micropore. Such small clusters are particularly large in number in C(SiC)B: Pd, where they are 0.5–0.7 nm in size. The content of small clusters in C(B4C)B: Pd is substantially lower, and they are somewhat larger in size (1.2–1.6 nm). The possible reasons of the ferromagnetism observed in these samples are discussed. It is assumed that the magnetism may be due to the small clusters, which do not have cubic symmetry. Original Russian Text ? A.M. Danishevskiĭ, R.N. Kyutt, A.A. Sitnikova, B.D. Shanina, D.A. Kurdyukov, S.K. Gordeev, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 3, pp. 604–608.  相似文献   

18.
Important electrothermographic characteristics such as charge acceptance, surface-potential decay with and without exposure to infrared radiations, retention of surface charge, contrast potential and residual potential of pure and sensitized cellulose acetate layers have been investigated. An attempt has been made to explain the results on the basis of electrical properties. Leucomalachite Green (LMG) is found to be very effective in controlling the thermosensitivity in the cellulose acetate layers. Cellulose acetate layer sensitized with 20% by wt of LMG shows a suitable high-contrast potential of 890 V with zero residual potential on heating its surface to 62° C and is a suitable material for electrothermographic and related applications.  相似文献   

19.
Pd-Cu bimetallic surfaces formed through a vacuum-deposition of Pd on Cu(1 1 1) have been discussed on the basis of carbon monoxide (CO) adsorption: CO is used as a surface probe and infrared reflection absorption (IRRAS) spectra are recorded for the CO-adsorbed surfaces. Low energy electron diffraction (LEED) patterns for the bimetallic surfaces reveal six-fold symmetry even after the deposition of 0.6 nm. The lattice spacings estimated by the separations of reflection high-energy electron diffraction (RHEED) streaks increase with increasing Pd thickness. Room-temperature CO exposures to the bimetallic surfaces formed by the Pd depositions less than 0.3 nm thickness generate the IRRAS bands due to the three-fold-hollow-, bridge- and linear-bonded CO to Pd atoms. In particular, on the 0.1 nm-thick Pd surface, the linear-bonded CO band becomes apparent at an earlier stage of the exposure. In contrast, the bridge-bonded CO band dominates the IRRAS spectra for CO adsorption on the 0.6 nm-thick Pd surface, at which the lattice spacing corresponds to that of Pd(1 1 1). A 90 K-CO exposure to the 0.1 nm-thick Pd surface leads to the IRRAS bands caused not only by CO-Pd but also by CO-Cu, while the Cu-related band is almost absent from the spectra for the 0.3 nm-thick Pd surface. The results clearly reveal that local atomic structures of the outermost bimetallic surface can be discussed by the IRRAS spectra for the probe molecule.  相似文献   

20.
High quality undoped ZnO nanorods have been synthesized at 850 °C by vapor-solid (VS) technique without a catalyst through a low cost process on silicon substrates. Then, ZnO nanorods have been characterized by using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and photoluminescence (PL) spectroscopy. Metal-semiconductor-metal (MSM) photodetectors with palladium (Pd) as contact electrodes have been successfully constructed for ultraviolet (UV) detection. Under dark and UV illumination, the load resistance of the Pd/ZnO junction was found to be 80.4 kΩ, and 23.5 kΩ referring to the maximum allowed bias voltage; the barrier height was estimated to be about 0.8 eV, and 0.76 eV, at 5 V applied bias voltage, respectively. It was found that the maximum responsivity of the Pd/ZnO MSM photodetector was 0.106 A/W at 300 nm which corresponds to a quantum efficiency of 43.8% at 5 V applied bias voltage. The transient photoresponse of the fabricated device is reported under different applied biases at 1 V, 3 V, and 5 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号