首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The bonding structure of carbon films prepared by pulsed laser deposition is determined by the plasma properties especially the change of the kinetic energy. Using double laser pulses the ablation process and the characteristics of the generated plasma can be controlled by the setting of the delay between the pulses. In our experiments, amorphous carbon films have been deposited in vacuum onto Si substrates by double pulses from a Ti:sapphire laser (180 fs, λ = 800 nm, at 1 kHz) and a KrF laser system (500 fs, λ = 248 nm, at 5 Hz). The intensities have been varied in the range of 3.4 × 1012 to 2 × 1013 W/cm2. The morphology and the main properties of the thin layers were investigated as a function of the time delay between the two ablating pulses (0-116.8 ps) and as a function of the irradiated area on the target surface. Atomic force microscopy, spectroscopic ellipsometry and Raman-spectroscopy were used to characterize the films. It was demonstrated that the change of the delay and the spot size results in the modification of the thickness distribution of the layers, and the carbon sp2/sp3 bonding ratio.  相似文献   

2.
The structural and magnetic properties of ∼12 nm thick FePt thin films grown on Si substrates annealed using a 1064 nm wavelength laser with a 10 ms pulse have been examined. The A1 to L10 ordering phase transformation was confirmed by electron and X-ray diffraction. An order parameter near 50% and a maximum coercivity of 12 kOe were obtained with laser energy densities of 25-32 J/cm2. Grain growth, quantified by dark field transmission electron microscopy, occurred during chemical ordering at the laser pulse widths studied.  相似文献   

3.
4.
Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N × ?th(N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research.  相似文献   

5.
A substantial spectral shift of the UV-laser induced luminescence in the Ag nanoparticles (NP) doped by Er3+ ions attached to ITO substrates was observed at T = 4.2 K. We have established high energy spectral shift of principal luminescent maxima (from wavelength equal to about 1.45 up to 1.15 μm) with increasing of the pumping nanosecond nitrogen laser power density up to 1.1 GW/cm2 operating at λ = 337 nm. With increasing Erbium content with respect to Ag the spectral shift and spectral line broadening increase. It may be caused by specific features of trapping level occupation kinetics on interfaces NP/ITO substrate. The observed process is fully reversible. The luminescence is observed only during excitation by the 337 nm laser pulses and is absent for laser pulses operating at other wavelengths (like excimer laser at 218 nm and nitrogen laser at 371 nm).  相似文献   

6.
Laser induced backside dry etching method (LIBDE) was developed - analogously to the well-known laser induced backside wet etching (LIBWE) technique - for the micromachining of transparent materials. In this procedure, the absorbing liquid applied during LIBWE was replaced with solid metal layers. Fused silica plates were used as transparent targets. These were coated with 15-120 nm thick layers of different metals (silver, aluminium and copper). The absorbing films were irradiated by a nanosecond KrF excimer laser beam through the quartz plate. The applied fluence was varied in the 150-2000 mJ/cm2 range, while the irradiated area was between 0.35 and 3.6 mm2. At fluences above the threshold values, it was found that the metal layers were removed from the irradiated spots and the fused silica was etched at the same time. In our experiments, we investigated the dependence of the main parameters (etch rate and threshold) of LIBDE on the absorption of the different metal layers (silver, copper, aluminium), on the size of the irradiated area, on the film thickness and on the number of processing laser pulses.  相似文献   

7.
We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF (λ = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm−2. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm−2), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence (λ ∼ 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.  相似文献   

8.
In this work we present periodic surface structures generated by linearly polarized F2 laser light (157 nm) on polyethyleneterephthalate (PET). Atomic force microscopy was used to study the topological changes induced by the laser irradiation. The laser irradiation induces the formation of periodic ripple structures with a width of ca 130 nm and a height of about 15 nm in the fluence range 3.80-4.70 mJ/cm2 and the roughness of the polymer surface increases due to the presence of these periodic structures. Subsequently, the laser modified PET foils were coated with a 50 nm thick gold layer by sputtering. After Au deposition on the PET foils with ripple structure, the roughness of surface decreases in comparison to PET with ripples without Au coating. For 50 nm thick Au layers, the ripple structure is not directly transferred to the gold coating, but it has an obvious effect on the grain size of the coating. With considerably thinner Au layers, the ripple structures are smoothened but preserved.  相似文献   

9.
In this paper, we investigated the mechanism of crystallization induced by femtosecond laser irradiation for an amorphous Si (a-Si) thin layer on a crystalline Si (c-Si) substrate. The fundamental, SHG, THG wavelength of a Ti:Sapphire laser was used for the crystallization process. To investigate the processed areas we performed Laser Scanning Microscopy (LSM), Transmission Electron Microscopy (TEM) and Imaging Pump-Probe measurements. Except for 267 nm femtosecond laser irradiation, the crystallization occurred well. The threshold fluences for the crystallization using 800 nm and 400 nm femtosecond laser irradiations were 100 mJ/cm2 and 30 mJ/cm2, respectively. TEM observation revealed that the crystallization occurred by epitaxial growth from the boundary surface between the a-Si layer and c-Si substrate. The melting depths estimated by Imaging Pump-Probe measurements became shallower when the shorter wavelength was used.  相似文献   

10.
Lactoferrin (Lf) is an iron-binding glycoprotein present in almost all mammalian secretions which plays an important role in host defense against microbial and viral infections. The protein has been reported to also have anti-inflammatory activity and antitumoral effects in vitro and in vivo.Thin films of Lf were deposited on silicon, quartz and Thermanox plastic coverslip substrates by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique, using a Nd:YAG laser working at 266 nm, at different laser fluences (0.1-0.8 J cm−2). The deposited layers have been characterized by Fourier Transformed Infra-Red spectroscopy (FTIR), and the morphology of the various substrates was investigated by Atomic Force Microscopy (AFM). The biocompatibility of lactoferrin thin films was evaluated for each substrate, by in vitro biochemical tests.  相似文献   

11.
Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO2 doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF* (λ = 248 nm, τ ≥ 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 °C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.  相似文献   

12.
Flexible gratings embedded in poly-dimethlysiloxane (PDMS) were fabricated using femtosecond laser pulses. Photo-induced gratings in a flexible PDMS plate were directly written by a high-intensity femtosecond (130 fs) Ti: Sapphire laser (λp=800 nm). Refractive index modifications with 4 μm diameters were photo-induced after irradiation of the femtosecond pulses with peak intensities of more than 1×1011 W/cm2. The graded refractive index profile was fabricated to be symmetric around the center of the focal point. The diffraction efficiency of the grating samples is measured by an He-Ne laser. The maximum value of refractive index change (Δn) in the laser-modified regions was estimated to be approximately 3.17×10−3.  相似文献   

13.
A Nd:YAG laser is environmentally safe and economical with no poisonous or hazardous gases and no expensive gases. We prepared Y123 films by using the fourth harmonic Nd:YAG pulsed laser deposition (PLD) method and optimized the deposition conditions on MgO single crystalline substrates and IBAD-MgO substrates for Y123 coated conductor. We found that the optimal deposition conditions acquired bi-axially aligned Y123 films on both substrates with Tc ∼ 90 K and Jc > 1 MA/cm2 at 77 K in self-field. For obtaining high Ic, we fabricated thick Y123 films on both substrates and the maximum Ic per 1 cm in width reached 186 A/cm-width on the IBAD-MgO substrate. Interestingly, there were no a-axis oriented grains within the films up to 1.8 μm thick. This might be an especial feature of the Nd:YAG-PLD method. We believe that the Nd:YAG-PLD method is promising method for RE123 coated conductor production.  相似文献   

14.
Yong-liang Li  Yu-lan Zhang 《Optik》2011,122(8):743-745
A sum-frequency yellow-green laser at 554.9 nm is reported by this paper, 946 nm wavelength is obtained from 4F3/2-4I9/2 transition in Nd:YAG and 1342 nm wavelength is obtained from 4F3/2-4I13/2 transition in Nd:YVO4. Using a doubly folded-cavity type-II critical phase matching KTP crystal intra cavity to make 946 nm laser from Nd:YAG and 1342 nm laser from Nd:YVO4 frequency summed, with incident pumped power of 30 W in Nd:YAG and 20 W in Nd:YVO4, TEM00 mode yellow-green laser at 554.9 nm at 1.15 W is obtained and its M2 factor is less than 1.22. The experimental results show that the Nd:YAG and Nd:YVO4 crystals intra-cavity sum-frequency mixing is an effective method for yellow-green laser and it can be applied to other two laser crystals to obtain more all-solid-state lasers with different wavelengths.  相似文献   

15.
We have demonstrated the successful thin film growth of two pullulan derivatives (cinnamate-pullulan and tosylate-pullulan) using matrix assisted pulsed laser evaporation (MAPLE). Our MAPLE system consisted of a KrF* laser, a vacuum chamber, and a rotating target holder cooled with liquid nitrogen. Fused silica and silicon (1 1 1) wafers were used as substrates. The MAPLE-deposited thin films were characterized by transmission spectrometry, profilometry, atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The deposited layers ranged from 250 nm to 16.5 μm in thickness, depending on the laser fluence (0.065-0.5 J cm−2) and number of pulses applied for the deposition of one structure (1500-13,300). Our results confirmed that MAPLE was well-suited for the transfer of cinnamate-pullulan and tosylate-pullulan.  相似文献   

16.
Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm2 and 32 pulses/mm2. Residual stress evaluation based on X-ray diffraction sin2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot.  相似文献   

17.
Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 1011 W/cm2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10−9, while for the 5th-harmonic it is 10−10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ∼30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.  相似文献   

18.
The continuous-wave high-efficiency laser emission of Nd:GdVO4 at the second-harmonic of 456 nm obtained by intracavity frequency doubling with an BiB3O6(BiBO) nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. About 3.8 W at 456 nm with M2 = 1.4 was obtained from a 5 mm-thick 0.4 at.% Nd:GdVO4 laser medium and a 12 mm-long BiBO nonlinear crystal in a Z-type cavity for 13.9 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.274. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4F5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

19.
We obtained AlN thin films by pulsed laser deposition (PLD) from a polycrystalline AlN target using a pulsed KrF* excimer laser source (248 nm, 25 ns, intensity of ∼4 × 108 W/cm2, repetition rate 3 Hz, 10 J/cm2 laser fluence). The target-Si substrate distance was 5 cm. Films were grown either in vacuum (10−4 Pa residual pressure) or in nitrogen at a dynamic pressure of 0.1 and 10 Pa, using a total of 20,000 subsequent pulses. The films structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectral ellipsometry (SE). Our TEM and XRD studies showed a strong dependence of the film structure on the nitrogen content in the ambient gas. The films deposited in vacuum exhibited a high quality polycrystalline structure with a hexagonal phase. The crystallite growth proceeds along the c-axis, perpendicular to the substrate surface, resulting in a columnar and strongly textured structure. The films grown at low nitrogen pressure (0.1 Pa) were amorphous as seen by TEM and XRD, but SE data analysis revealed ∼1.7 vol.% crystallites embedded in the amorphous AlN matrix. Increasing the nitrogen pressure to 10 Pa promotes the formation of cubic (≤10 nm) crystallites as seen by TEM but their density was still low to be detected by XRD. SE data analysis confirmed the results obtained from the TEM and XRD observations.  相似文献   

20.
A high power diode-end-pumped passively Q-switched and mode-locking (QML) Nd:GdVO4 laser at 912 nm was demonstrated for the first time, to the best of our knowledge. A Z-type laser cavity with Cr4+:YAG crystals as the intracavity saturable absorber were employed in the experiments. Influence of the initial transmission (TU) of the saturable absorber on the QML laser performance was investigated. Using the TU = 95% Cr4+:YAG, as much as an average output power of 2.0 W pulsed 912 nm laser was produced at an absorbed pump power of 25.0 W, then the repetition rates of the Q-switched envelope and the mode-locking pulse were ~ 224 kHz and ~ 160 MHz, respectively. Whereas the maximum output power was reduced to 1.3 W using the TU = 90% Cr4+:YAG, we obtained a 100% modulation depth for the mode-locking pulses inside the Q-switched envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号