首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Nd:YAG laser passively Q-switched by a Cr:YAG showed a high single pulse energy of 53.0 mJ and 5.1 MW peak power. The laser was pumped by quasi-continuous-wave diode bars from single side. The Q-switched pulse had optical-to-optical efficiency of 12% and average temporal duration of 10.4 ns when Cr:YAG with initial transmission of 9.0% was used. Intense pumping as well as very low initial transmission of the saturable absorber gave very high peak power.  相似文献   

2.
Teeth are constituted mainly of hydroxyapatite molecules (Ca10(PO4)6(OH)2), grouped in different microstructural arrangements, depending on the dental layer considered (enamel or dentine). In the present work, these dental microstructural arrangements were characterized by atomic force microscopy. Enamel and dentine samples were cut from freshly extracted bovine incisor teeth. After metallographic polishing, the dental surfaces were etched with lactic acid (113.8 mmol/L, pH 3.3). Three etching times were tested: 1, 3 and 5 min. Atomic force micrographs showed that 1 min of etching time was effective to remove the smear layer, polishing debris and scratches, and display the characteristics of interest for both enamel and dentine. Although the bovine dental enamel rod cross-section presented keyhole-like shape, its measured dimensions (8.8 μm of major axis and 3.7 μm of minor axis) exhibited an insignificant discrepancy from human prisms diameters. Bovine dentinal tubules displayed larger mean diameters (4.0 μm) and a lower density (~17,100 tubules/mm2) than human dentine, suggesting that the use of bovine dentine as a substitute for human dentine in resin adhesion investigations should be reconsidered. Apatite nanoparticles presented a mean radius (22–23 nm) considerably smaller than that of human teeth.  相似文献   

3.
The aim of this study was to evaluate in vitro the influence of Er:YAG laser energy variation to cavity preparation on the morphology of enamel/adhesive system interface, using SEM. Eighteen molars were used and the buccal surfaces were flattened without dentine exposure. The specimens were randomly assigned to two groups, according to the adhesive system (conventional total-etching or self-etching), and each group was divided into three subgroups (bur carbide in turbine of high rotation, Er:YAG laser 250 mJ/4 Hz and Er:YAG laser 300 mJ/4 Hz) containing six teeth each. The enamel/adhesive system interface was serially sectioned and prepared for SEM. The Er:YAG laser, in general, produced a more irregular adhesive interface than the control group. For Er:YAG laser 250 mJ there was formation of a more regular hybrid layer with good tag formation, mainly in the total-etching system. However, Er:YAG laser 300 mJ showed a more irregular interface with amorphous enamel and fused areas, for both adhesive systems. It was concluded that cavity preparation with Er:YAG laser influenced on the morphology of enamel/adhesive system interface and the tissual alterations were more evident when the energy was increased.  相似文献   

4.
A series of Cr,Er:Gd3Ga5O12 crystals with high concentrations of Er3 + were grown by Czochralski method. The absorption spectra, the up-conversion, near infrared (NIR) and mid-infrared (Mid-IR) luminescence spectra as well as the luminescence decay curves of Er: 4I13/2 and 4I11/2 levels were measured at room temperature. The spectroscopic properties of Cr,Er:Gd3Ga5O12 crystals and Cr–Er energy transfer processes were investigated. The spectroscopy of the Er3 +:4I11/2  4I13/2 transition was centralized to discuss, and the important optical parameters including luminescence lifetimes and the Cr–Er energy transfer efficiency are presented. Based on the comprehensive spectral analyses, 0.6 at.%Cr/50 at.%Er:GGG crystal is preferred as candidate of potential xenon lamp pumped ~ 2.7 μm laser in this work.  相似文献   

5.
A study is made of a diode pumped Er3+:YSGG laser crystal operating at 2.797 μm. Lasers were constructed in the bounce geometry, using a transversely cooled 50 at.% Er:YSGG slab and a face-cooled 38 at.% Er:YSGG slab. Results from these are compared with those from a 50 at.% Er3+:YAG laser, also in the bounce geometry. With quasi-continuous wave diode pumping, free-running pulse energies of up to ~55 mJ and a slope efficiency of 20.5% are obtained from 50 at.% Er:YSGG. Better thermal performance is obtained from the face-cooled 38 at.% Er:YSGG slab, allowing average power of ~2 W to be obtained at a repetition rate and pump pulse duration of 140 Hz and 500 μs, respectively. Both Er:YSGG systems perform better than Er:YAG. Numerical modelling of the free-running 50 at.% Er:YSGG and Er:YAG systems is undertaken with good qualitative agreement with experimental results. Electro-optic Q-switching of the 50 at.% Er:YSGG laser using a LiNbO3 crystal yields ~0.5 mJ pulses with ~77 ns duration.  相似文献   

6.
Ultrafast pulsed laser ablation has been investigated as a technique to machine CdWO4 single crystal scintillator and segment it into small blocks with the aim of fabricating a 2D high energy X-ray imaging array. Cadmium tungstate (CdWO4) is a brittle transparent scintillator used for the detection of high energy X-rays and γ-rays. A 6 W Yb:KGW Pharos-SP pulsed laser of wavelength 1028 nm was used with a tuneable pulse duration of 10 ps to 190 fs, repetition rate of up to 600 kHz and pulse energies of up to 1 mJ was employed. The effect of varying the pulse duration, pulse energy, pulse overlap and scan pattern on the laser induced damage to the crystals was investigated. A pulse duration of ≥500 fs was found to induce substantial cracking in the material. The laser induced damage was minimised using the following operating parameters: a pulse duration of 190 fs, fluence of 15.3 J cm−2 and employing a serpentine scan pattern with a normalised pulse overlap of 0.8. The surface of the ablated surfaces was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Ablation products were found to contain cadmium tungstate together with different cadmium and tungsten oxides. These laser ablation products could be removed using an ammonium hydroxide treatment.  相似文献   

7.
For better selection of “tooth-like” dental restorative materials, it is of great importance to evaluate the thermal properties of the human tooth. A simple method capable of non-destructively characterizing the thermal properties of the individual layers (dentine and enamel) of human tooth is presented. The traditional method of monotonic heating regime was combined with infrared thermography to measure the thermal diffusivities of enamel and dentine layers without physically separating them, with 4.08 (±0.178) × 107 m2/s measured for enamel and 2.01 (±0.050) × 107 m2/s for dentine. Correspondingly, the thermal conductivity was calculated to be 0.81 W/mK (enamel) and 0.48 W/mK (dentine). To examine the dependence of thermal conductivity on the configuration of dentine microstructure (microtubules), the Maxwell-Eucken and Parallel models of effective thermal conductivity are employed. The effective thermal conductivity of dentine in the direction parallel to tubules was found to be about 1.1 times higher than that perpendicular to the tubules, indicating weak anisotropy. By adopting the Series model, the bulk thermal conductivity of enamel and dentine layers is estimated to be 0.57 W/mK.  相似文献   

8.
This study was conducted to analyze the ablation rate and micromorphological aspects of microcavities in enamel and dentin of primary and permanent teeth using a Er: YAG laser system. Micromorphological evaluation has been performed in terms of permanent teeth; however, little information about Er: YAG laser interaction with primary teeth can be found in the literature. Because children have been the most beneficiary patients with laser therapy in our offices, it is extremely necessary to compare the effects of this kind of laser system on the enamel and dentin of permanent and primary teeth. In this study, we used eleven intact primary anterior exfoliated teeth and six extracted permanent molar teeth. We used a commercial laser system: a Er: YAG Twin Light laser system (Fotona Medical Lasers, Slovenia) at 2940 nm, changing average energy levels per pulse (100, 200, 300, and 400 mJ) producing 48 microcavities in enamel and dentin of primary and permanent teeth. Primary teeth are more easily ablated than are permanent teeth, when related to enamel or dentin. However, while this laser system is capable of slowly revealing the enamel’s microstructure, in dentin only the lowest laser energies permit this kind of observation, more easily decomposing the original tissue aspect, when related to primary or permanent teeth. Statistically, the only different factor at the 5% level was an energy per pulse of 400 mJ, confirming the results found in SEM. Our results showed that dentin in both primary and permanent teeth is less resistant to Er: YAG laser ablation; this fact is easily observed under SEM observation and through the ablation rate evaluation.  相似文献   

9.
W.X. Lan  Q.P. Wang  Z.J. Liu  X.Y. Zhang  F. Bai  H.B. Shen  L. Gao 《Optik》2013,124(24):6866-6868
A diode end-pumped passively Q-switched Nd:YAG/KTA intracavity Raman laser is presented. A KTA crystal with a size of 5 mm × 5 mm × 25 mm is used as the Raman active medium and its 234 cm?1 Raman mode is employed to finish the conversion from 1064 nm fundamental laser to 1091 nm Raman laser. A 2 mm thick Cr4+:YAG crystal is used as the saturable absorber. With an LD pump power of 7.5 W, the first-Stokes power of 250 mW is obtained with a pulse repetition frequency of 14.5 kHz. The corresponding diode-to-Stokes conversion efficiency is 3.3% and the pulse energy is 17.2 μJ. Pulse width is measured to be 12.6 ns and peak power is 1.4 kW.  相似文献   

10.
The design and performance of conduction-cooled, laser diode-pumped oscillator and amplifier slab laser featuring high efficiency, high pulse energy and high beam quality for space-based application are reported. The oscillator was a diode-pumped Q-Switched Nd:YAG slab laser using unstable resonator, and the amplifiers were two zig-zag Nd:YAG slabs based on a side-pumped slab geometry. A near diffraction-limited output of 450 mJ in a 10 ns pulse at a repetition rate of 20 Hz was obtained, corresponding to an optical-to-optical conversion efficiency of over 20%.  相似文献   

11.
Different surface morphologies on AISI 304 stainless steel have been obtained after millisecond Nd:YAG pulsed laser oxidation. The effects of laser processing parameters, especially pulse width and laser energy density on the surface morphologies of the stainless steel were emphatically investigated. The results showed that surface morphologies were significantly changed with increasing laser pulse widths and laser energy densities. When the pulse width was 0.2–1.0 ms and laser energy density was 4.30×106–7.00×106 J/m2, the surface was obviously damaged and the morphologies varied gradually from craters to ripple structures. However, when the pulse width was longer than 1 ms and the laser energy density was increased from 1.90×107 to 3.16×107 J/m2, the sizes of craters got smaller until disappeared and the surface became flatter and smoother. Nevertheless, the smooth surface was not obtained under overhigh laser energy densities. In addition, the schematic relationship was used to describe the formation process and mechanism of different surface morphologies.  相似文献   

12.
Transmission measurements of Q-switched and free-running Er:YAG laser radiation, at 2.94 μm and free-running Ho:YAG laser radiation, at 2.06 μm, through hollow silica waveguides of 750 and 1000 μm core diameter were performed. Attenuation measurements were obtained as a function of the laser energy input and as a function of the bending curvature. The output beam quality was also studied as a function of the focal length of the coupling lens and the overall launching conditions for straight waveguides using the appropriate beam profiler.  相似文献   

13.
Undoped and Erbium (Er) doped zinc oxide (EZO) thin films were deposited on glass substrate by sol–gel method using spin coating technique with different doping concentration. EZO films were characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV–VIS-NIR transmission and single beam z scan method under illumination of frequency doubled Nd:YAG laser. The deposited films were found to be well crystallized with hexagonal wurtzite structure having a preferential growth orientation along the ZnO (002) plane. A blue-shift was observed in the band gap of EZO films with increasing Er concentration. All the films exhibited a negative value of nonlinear refractive index (n2) at 532 nm which is attributed to the two photon absorption and weak free carrier absorption. Third order nonlinear optical susceptibility, χ(3) values of EZO films were observed in the remarkable range of 10? 6 esu. EZO (0.4 at.%) sample was found to be the best optical limiter with limiting threshold of 1.95 KJ/cm2.  相似文献   

14.
H. Ohnishi  E. Inami  J. Kanasaki 《Surface science》2011,605(15-16):1497-1502
Structural changes of graphite surfaces induced by femtosecond (fs) laser excitation at a fluence regime above 75 mJ/cm2 are reported. Direct imagings of excited surfaces by means of scanning tunneling microscopy have revealed that fs-excitations induce nanometer-scaled craters, together with sp3-type interlayer-bonded domains. The nano-craters are characterized by atomically-flat bottom and two atomic-steps in depth, indicating the exfoliation of fragmentary intact-sheets of double-layer of graphite. The theoretical simulation has shown that the required energy for the double-layer ablation is much lowered by the help of interlayer-bond formation, compared to the sequential removal of individual graphene layers. Based on the experimental and theoretical results, the exfoliation of double graphite layers, that is a novel mode of laser-ablation observed first, indicates clearly that the formation of strong interlayer bonds between the two atomic layers is a crucial step in the ablation process.  相似文献   

15.
We demonstrate a diode-pumped Nd:YAG ceramic laser with emission at 946 nm that is passively Q-switched by single-crystal Cr4+:YAG saturable absorber. An average output power of 1.7 W is measured under 18.4 W of incident power using an output mirror with transmission T=4%. The corresponding optical-to-optical efficiency is 9.2%. The laser runs at a pulse repetition rate of 120 kHz and delivers pulses with energy of 14 μJ and duration of 80 ns, which corresponds to a peak power of 175 W.  相似文献   

16.
In this paper, we report the experimental results of a pulsed flash lamp Nd:YAG laser at wavelength of 1064 nm and Q-switched by Cr4+:YAG solid state saturable absorber. We have obtained the output energy (E) and pulse- width (τp) of this laser for various initial transmissions of this saturable absorber. Furthermore, the effect of reflectivity of the output coupler (R), diameter of the rod (d), and optical length of the cavity (l) on this laser output data have been investigated. We have used the corner cube as a back mirror, which shows high laser stability and better brightness. We have obtained pulse-width 15 ns with 31 mJ output energy. We have also analyzed this laser theoretically and analytically, which agrees well with our corresponding experimental results.  相似文献   

17.
An electro-optical cavity-dumped 20 Hz Ce:Nd:YAG laser with an optimized thermal-insensitive concavo-convex cavity for aesthetic medicine was demonstrated. The pulse width remained constant at 6.0 ns. The maximum output energy and peak power were 120 mJ and 20 MW, respectively. The average output energy was very stable. The fluctuations of average output energy within 6 cycles and 10 min were 0.89% and 7.9%, respectively.  相似文献   

18.
Unexpected temperature rise is observed in end-pumped YAG–Nd3+:YAG–YAG slab laser experimentally. The measured optical absorption spectrum of undoped YAG in 780–830 nm indicates an absorption coefficient of 0.015 cm?1 at 808 nm. The influence of the weak absorption on temperature distribution in end-pumped composite slabs is analyzed numerically and a good agreement with infrared measurement is achieved. The results of finite element analysis show that longer heat sinks and wider slabs bring lower temperature.  相似文献   

19.
We present a 2.09 μm single-longitudinal-mode sandwich-type YAG/Ho:YAG/YAG ceramic laser pumped by a Tm-doped fiber laser for the first time. A pair of F-P etalons was used to achieve tunable single-longitudinal-mode operation. The maximum single-longitudinal-mode output power of 530 mW at 2091.4 nm was obtained with an absorbed pump power of 8.06 W, corresponding to an optical conversion efficiency of 6.6% and a slope efficiency of 12.7%. Wavelength tunable was achieved by tuning the angle of etalons and the wavelength could be tuned from 2091.1 nm to 2092.1 nm, corresponding to a tuning frequency of 68 GHz. The M2 factor was measured to be 1.23.  相似文献   

20.
Differing from conventional liquid lasers, a novel concept of fluid laser was provided, which has attractively potential using in high average power lasers. The laser medium was prepared by dispersing Nd3+: phosphate glass micro-balls in organic match liquid. Its optical properties were investigated and the radiative transition rate was calculated by Judd–Ofelt theory. The experiment of laser oscillation in static state indicates that the heat exchanging has limited effect on refractive index of the fluid laser medium in a short time. In circulating state, a laser oscillation occurred at 1058.1 nm when pumped by two 808 nm diode lasers. The maximum output energy is 2.58 mJ with the absorbed pumping energy of 460 mJ. This study offers a new way in the exploration of high average power laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号