首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent.Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 16~3×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion.  相似文献   

2.
We define a two-dimensional topological Yang-Mills theory for an arbitrary compact simple Lie group. This theory is defined in terms of intersection theory on the moduli space of flat connections on a two-dimensional surface and corresponds physically to a two-dimensional reduction and truncation of four-dimensional topological Yang-Mills theory. Two-dimensional topological Yang-Mills theory defines a topological matter system and may be naturally coupled to two-dimensional topological gravity. This topological Yang-Mills theory is also closely related to Chern-Simons gauge theory in 2 + 1 dimensions. We also discuss a relation between SL (2, ) Chern-Simons theory and two-dimensional topological gravity.  相似文献   

3.
The symmetries and topological properties of the topological counterparts in 1D non-Hermitian systems are investigated. It is found that, after applying the non-unitary similarity transformation, the non-unitary topological counterpart in real space exhibits completely different global symmetries except for the sublattice symmetry and reveals many brand new local symmetries. Due to the abundant symmetries of non-unitary topological counterparts, it is also found that the unique overlapping projections about the unit sphere vector representing the eigenstates appear in the nontrivial regions, and the triviality of the point-gap topology of non-unitary topological counterpart completely eliminate the intrinsic skin effect in non-Hermitian systems. It is also shown that the unitary topological counterpart never arises any changes for the original symmetries and topological structures even in real space. Unitary topological counterparts are further summarized about the two-band Bloch Hamiltonian, which can expand the definition of non-Bloch winding number. Furthermore, it is demonstrated theoretically that the Bloch Hamiltonian would still hold time-reversal symmetry, abnormal particle-hole symmetry, and sublattice symmetry even suffering from the non-unitary transformation. This work provides a new way to understand the roles of symmetry and topology in non-Hermitian systems from the perspective of topological counterparts.  相似文献   

4.
The topological phase transitions among normal insulator phase, two kinds of topological insulator phases, and topological semimetal phase are shown based on the non-Hermitian dimerized Su–Schrieffer–Heeger (SSH) model with the nonreciprocal intercell and long-range hopping. In contrast to the previous work, it is found that the topological insulator phase in the present SSH model can hold the larger non-Bloch winding number accompanied by exceptional winding of the generalized Brillouin zone around the gap-closing points. Compared with the usual topological insulator phase in non-Hermitian SSH model, the topological insulator with the larger winding number owns two pairs of zero energy modes with a distinct form of edge localization in the gap. The physical mechanism of the distinct edge localization for zero energy modes via a equivalent Hermitian version of the non-Hermitian SSH model is revealed. Additionally, the process of the phase transition is visualized among normal insulator phase, topological insulator phases, and topological semimetal phase in detail via the evolution of the gap-closing points on the plane of generalized Brillouin zone. This work further verifies the non-Bloch theory and enrich the investigation about the topologically nontrivial phase with the larger topological invariant in the non-Hermitian SSH model.  相似文献   

5.
郑圣洁  夏百战  刘亭亭  于德介 《物理学报》2017,66(22):228101-228101
声子晶体的Dirac线性色散关系,使其具有奇特的声拓扑特性,在声波控制领域具有良好的应用前景.目前,声子晶体的拓扑边缘态主要基于Bragg散射所产生的能带结构,难以实现低频声波的受拓扑保护单向边缘传输.本文引入空间盘绕结构,设计了具有C_(3v)对称性的空间盘绕型声学超材料,并研究其布里渊区高对称点(K/K'点)的亚波长Dirac锥形线性色散.接着,通过旋转打破空间盘绕型声学超材料的镜像对称性,使其Dirac简并锥裂开而产生亚波长拓扑相变和亚波长拓扑谷自旋态.最后,采用拓扑相位互逆的声学超材料构造拓扑界面,实现声拓扑谷自旋传输.空间盘绕型声学超材料的亚波长Dirac线性色散与亚波长拓扑谷自旋态突破了声子拓扑绝缘体的几何尺寸限制,为声拓扑稳健传输在低频段的应用提供理论基础.  相似文献   

6.
周博臻  周斌 《中国物理 B》2016,25(10):107401-107401
We investigate the topological properties of a ladder model of the dimerized Kitaev superconductor chains.The topological class of the system is determined by the relative phase θ between the inter-and intra-chain superconducting pairing.One topological class is the class BDI characterized by the Z index,and the other is the class D characterized by the Z_2 index.For the two different topological classes,the topological phase diagrams of the system are presented by calculating two different topological numbers,i.e.,the Z index winding number W and the Z_2 index Majorana number M,respectively.In the case of θ=0,the topological class belongs to the class BDI,multiple topological phase transitions accompanying the variation of the number of Majorana zero modes are observed.In the case of θ = π/2 it belongs to the class D.Our results show that for the given value of dimerization,the topologically nontrivial and trivial phases alternate with the variation of chemical potential.  相似文献   

7.
Three-dimensional (3D) topological insulators represent a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. The unusual surface states of topological insulators rise from the nontrivial topology of their electronic structures as a result of strong spin-orbital coupling. In this review, we will briefly introduce the concept of topological insulators and the experimental method that can directly probe their unique electronic structure: angle resolved photoemission spectroscopy (ARPES). A few examples are then presented to demonstrate the unique band structures of different families of topological insulators and the unusual properties of the topological surface states. Finally, we will briefly discuss the future development of topological quantum materials.  相似文献   

8.
Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant α=e2/?c. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.  相似文献   

9.
吴冰兰  宋俊涛  周娇娇  江华 《中国物理 B》2016,25(11):117311-117311
Disorder inevitably exists in realistic samples,manifesting itself in various exotic properties for the topological states.In this paper,we summarize and briefly review the work completed over the last few years,including our own,regarding recent developments in several topics about disorder effects in topological states.For weak disorder,the robustness of topological states is demonstrated,especially for both quantum spin Hall states with Z_2 = 1 and size induced nontrivial topological insulators with Z_2 = 0.For moderate disorder,by increasing the randomness of both the impurity distribution and the impurity induced potential,the topological insulator states can be created from normal metallic or insulating states.These phenomena and their mechanisms are summarized.For strong disorder,the disorder causes a metal-insulator transition.Due to their topological nature,the phase diagrams are much richer in topological state systems.Finally,the trends in these areas of disorder research are discussed.  相似文献   

10.
A one-dimensional closed interacting Kitaev chain and the dimerized version are studied. The topological invariants in terms of Green's function are calculated by the density matrix renormalization group method and the exact diagonalization method. For the interacting Kitaev chain, we point out that the calculation of the topological invariant in the charge density wave phase must consider the dimerized configuration of the ground states. The variation of the topological invariant is attributed to the poles of eigenvalues of the zero-frequency Green functions. For the interacting dimerized Kitaev chain, we show that the topological invariant defined by Green's functions can distinguish more topological nonequivalent phases than the fermion parity.  相似文献   

11.
Topological pumping of edge states in the finite lattice with nontrivial topological phases provides a powerful means for robust excitation transfer, requiring extremely slow evolution to follow an adiabatic transfer. Here, we propose fast topological pumping via edge channels to generate large-scale Greenberger−Horne−Zeilinger (GHZ) states in a topological superconducting circuit with a sped-up evolution process. The scheme indicates a conceptual way of designing fast topological pumping related to the instantaneous energy spectrum characteristics rather than relying on the shortcuts to adiabaticity. Based on fast topological pumping, large-scale GHZ states show greater robustness against on-site potential defects, the fluctuation of couplings and losses of the system in comparison with the conventional adiabatic topological pumping. With experimentally feasible qutrit-resonator coupling strengths and moderate decay rates of qutrits and resonators, fast topological pumping drastically improves the scalability of GHZ states with a high fidelity. Our work opens up prospects for the realization of large-scale GHZ states based on fast topological pumping in the superconducting quantum circuit system, which provides potential applications of topological matters in quantum information processing.  相似文献   

12.
In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero modes.The topological phase diagrams are obtained by decomposing the topological invariants and the topological conditions for topologically nontrivial phases are given precisely.For systems which belongs to topological class BDI,we obtain the regions in the phase diagrams where the topological numbers show even-odd effect.For the Kitaev tube model a phase factor induced by the magnetic flux in the axial direction of the tube is introduced to alter the classification of the tube Hamiltonian from class BDI to D.The Kitaev tube of class D is characterized by the Z_2 index when the number of chains is odd while 0,1,2 when the number of chains is even.The phase diagrams show periodic behaviors with respect to the magnetic flux.The bulk-boundary correspondence is demonstrated by the observations that the topological conditions for the bulk topological invariant to take nontrivial values are precisely those for the existence of the Majorana zero modes.  相似文献   

13.
Gapless surface states on topological insulators are protected from elastic scattering on nonmagnetic impurities which makes them promising candidates for low-power electronic applications. However, for widespread applications, these states should have to remain coherent at ambient temperatures. Here, we studied temperature dependence of the electronic structure and the scattering rates on the surface of a model topological insulator, Bi2Se3, by high-resolution angle-resolved photoemission spectroscopy. We found an extremely weak broadening of the topological surface state with temperature and no anomalies in the state's dispersion, indicating exceptionally weak electron-phonon coupling. Our results demonstrate that the topological surface state is protected not only from elastic scattering on impurities, but also from scattering on low-energy phonons, suggesting that topological insulators could serve as a basis for room-temperature electronic devices.  相似文献   

14.
由于丰富的拓扑量子效应及巨大的潜在应用价值,拓扑材料逐渐成为凝聚态物理前沿的研究材料体系。其中,作为与石墨烯具有相似电子结构的材料,三维拓扑半金属吸引了越来越多的研究兴趣。目前已知的拓扑半金属大多为非磁性的,而磁性拓扑半金属数量有限,与非磁性拓扑半金属相比较,研究开展的还比较少。磁性与拓扑之间的相互作用能够导致非常规的物理性质,如反常霍尔效应甚至量子反常霍尔效应等。此外,在一些具有特殊磁结构的拓扑半金属中,施加外磁场能够调制其自旋结构,从而影响其拓扑能带结构。在该综述中,笔者将详细介绍利用外磁场在 EuCd2Pn2 (Pn = As, Sb) 反铁磁半金属材料中通过调制自旋结构从而改变晶体结构对称性来诱导拓扑相变。此外,笔者也将简单介绍包括 GdPtBi 和 MnBi2Te4 在内的几个相关材料。该综述中讨论的外磁场调控的磁交换诱导的拓扑相变不仅有望应用于拓扑器件,也有助于为理解磁性与拓扑态之间的紧密关联提供新的线索,对于设计新的磁性拓扑材料有启发意义。综述最后,笔者对发展磁性拓扑半金属做了一些简单展望。  相似文献   

15.
The quantization of the magnetic flux in superconducting rings is studied in the frame of a topological model of electromagnetism that gives a topological formulation of electric charge quantization. It turns out that the model also embodies a topological mechanism for the quantization of the magnetic flux with the same relation between the fundamental units of magnetic charge and flux as there is between the Dirac monopole and the fluxoid.  相似文献   

16.
We investigate possible phase transitions among the different topological insulators in a honeycomb lattice under the combined influence of spin-orbit couplings and staggered magnetic flux. We observe a series of topological phase transitions when tuning the flux amplitude, and find topologically nontrivial phases with high Chern number or spin-Chern number. Through tuning the exchange field, we also find a new quantum state which exhibits the electronic properties of both the quantum spin Hall state and quantum anomalous Hall state. The topological characterization based on the Chern number and the spin-Chern number are in good agreement with the edge-state picture of various topological phases.  相似文献   

17.
There are exact solutions to Einstein’s equations with negative cosmological constant that represent black holes whose event horizons are manifolds of negative curvature, the so-called topological black holes. Among these solutions there is one, the massless topological black hole, whose mass is equal to zero. Hod proposes that in the semiclassical limit the asymptotic quasinormal frequencies determine the entropy spectrum of the black holes. Taking into account this proposal, we calculate the entropy spectrum of the massless topological black hole and we compare with the results on the entropy spectra of other topological black holes.  相似文献   

18.
We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling. We calculate the band structure of the lattice and evaluate the Z2 topological indices. According to the Z2 topological indices and the band structure, we present the phase diagrams of the lattice with different filling fractions. We find that topological insulators occur in some range of parameters at 1/6, 1/3, 1/2, 2/3 and 5/6 filling fractions. We analyze and discuss the characteristics of these topological insulators and their edge states.  相似文献   

19.
We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling. We calculate the band structure of the lattice and evaluate the Z2 topological indices. According to the Z2 topological indices and the band structure, we present the phase diagrams of the lattice with different filling fractions. We find that topological insulators occur in some range of parameters at 1/6, 1/3, 1/2, 2/3 and 5/6 filling fractions. We analyze and discuss the characteristics of these topological insulators and their edge states.  相似文献   

20.
The topological charge of integral vortex beams with a single circle of multipoints has previously been measured. In this work, we theoretically and experimental study the diffraction patterns of vortex beams of integral and fractional topological charges using a single circle and two circles of multipoint plates. It is found that the diffraction patterns are dependent not only on the multipoint plates, but also on the topological charge of the vortex beams. On the basis of this property, we can measure the topological charges of integral and fractional vortex beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号