首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By synthesis and 13C-NMR spectroscopic investigations of rhamnocitrin-, rhamnazin- and rhamnetin - 3 - O - [O - α - l - rhamnopyranosyl - (1 → 4) - O - α - l - rhamnopyranosyl - (1 → 6)] β - d - galactopyranosides and of rhamnocitrin - 3 - O - [O - α - l - rhamnopyranosyl - (1 → 3) - O - α - l - rhamnopyranosyl - (1 → 6)] - β - d - galactopyranoside (rhamnocitrin - 3 - O - β - rhamnisoide) it was proved that all naturally occurring flavonoltriosides, so far isolated from different Rhamnus species, contain the sugar-moiety rhamninose. Thus it was shown that catharticin (rhamnocitrin - 3 - O - β - rhamninoside) is identical with alaternin and xanthorhamnin A (rhamnetin - 3 - O - β - rhamninoside) with xanthorhamnin B, whereas xanthorhamnin C is rhamnazin - 3- O - β - rhamninoside. From Rhamnus saxatilis JACQ., ssp. saxat. a new flavonol - acetyl - trioside was isolated and the structure by MS and 13C-NMR spectroscopic means elucidated to be the rhamnetin - 3 - O - [O - α - l - rhamnopyranosyl - (1 → 3) - O - (4 - O - acetyl - ) - α - l - rhamnopyranosyl - (1 → 6)] - β - d - galactopyranoside.  相似文献   

2.
《Tetrahedron: Asymmetry》2000,11(2):481-492
The synthesis of a linear hexasaccharide, 2-(4-trifluoroacetamidophenyl)ethyl (β-d-galactopyranosyl)-(1→4)-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-(β-d-galactopyranosyl)-(1→4)-(d-glycero-α-d-manno-heptopyranosyl)-(1→6)-(β-d-glucopyranosyl)-(1→4)-l-glycero-α-d-manno-heptopyranoside, corresponding to a structure found in Haemophilus ducreyi LPS, is described. A Barbier reaction between benzyloxymethyl chloride and a properly protected 6-aldo-1-thio-mannopyranoside yielded both the d,d- and the l,d-heptopyranoside (2 and 3, ratio 2:3), which were separated and both used in the synthesis. p-Methoxybenzyl and chloroacetyl groups were employed as temporary protecting groups, selectively removed in the presence of the persistent benzyl, acetyl, benzoyl and isopropylidene groups by treatment with DDQ/H2O and hydrazine dithiocarbonate, respectively. Thioglycosides were utilised as donors throughout using either NIS/TfOH or DMTST as promoters. The introduction of the spacer into thioglycoside 5 was high-yielding (95%) but with low stereoselectivity (α:β 5:3). All other glycosylations are completely stereoselective. The target hexasaccharide is obtained via a 3+3 block approach with the yield in the final NIS/TfOH-promoted coupling between an N,N-diacetyl-trisaccharide thioglycosyl donor 20 and a 4′′-OH trisaccharide acceptor 13 being 75%.  相似文献   

3.
The different steps leading to oligosaccharide synthesis on polymeric support have been studied in the case of a functionalized ”popcorn” polystyrene: anchoring of the first glucidic group, unblocking of a selectively protected hydroxyl group, glycosylation and cleavage of the glucide support bond. The first glucidic unit is attached by a benzoic ester bond cleaved by methanolysis (Zemplén's method); β-benzoylpropionic ester was used as temporary protecting group. The synthesis of benzyl - 2 - acetamido - 4,6 - di - O - acetyl - 3 - O - (2 - acetamido - 3,4,6 - tri - O - acetyl - 2 - deoxy - β - D - glucopyranosyl) - 2 - deoxy - α - D - glucopyranoside is described as an example.  相似文献   

4.
An analogue of the polyoxins has been prepared from 1,5 - di - O - acetyl - 3 - C - (R) - ethoxycarbonylmethyl -5(R),1′(R) - N - formylepimino - 2,3 - O - isopropylidene - β - d - ribofuranose (13). The structure of 13 was determined by X-ray analysis. Intramolecular acetal migrations were observed during acetolysis under acid conditions.  相似文献   

5.
Sugar epoxides are transformed in almost quantitative yields, under mild reaction conditions, into their corresponding unsaturated monosaccharides by reaction with O,O-dialkylphosphoroselenoic acids salts. A mechanism involving the formation of a penta-coordinate phosphorus intermediate is proposed.The deoxygenation was performed with the following sugar epoxides: 5,6 - anhydro -1,2 - O - isopropylidene - α - D - glucofuranose (1), 5,6 - anhydro - 1,2 - O - cyclohexylidene - α - D - glucofuranose (2), methyl - 2,3 - anhydro - 4, 6 - O - benzylidene - α - D - allopyranoside (3), methyl - 2,3 - anhydro - 4,6 - O - benzylidene - α - D - mannopyranoside (4) and 3,4,6 - tri - O - acetyl - 1,2 - anhydro - α - D - glucopyranose (Brigl's anhydride) (5).  相似文献   

6.
Di‐ and trisaccharide thioglycoside building blocks, ethyl (2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl)‐(1→2)‐3‐O‐allyl‐4,6‐di‐O‐benzyl‐1‐thio‐α‐d‐mannopyranoside, ethyl (2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl)‐(1→2)‐6‐O‐acetyl‐3‐O‐allyl‐4‐O‐benzyl‐1‐thio‐α‐d‐mannopyranoside and ethyl (2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl)‐(1→4)‐[(2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl)‐(1→2)]‐3‐O‐allyl‐6‐O‐benzyl‐1‐thio‐α‐d‐mannopyranoside, corresponding to repetitive structures in the capsular polysaccharide (CPS) of Cryptococcus neoformans have been synthesised using silver triflate‐promoted couplings between benzobromoxylose and properly protected mannose ethyl thioglycosides. The blocks contain an orthogonal allyl group in the 3‐position of the mannose residue to allow continued formation of the (1→3)‐linked mannan backbone of the CPS. They have benzyl ethers as persistent protecting groups to facilitate access to the acetylated target structures. Assembly of the blocks employing DMTST as promoter in diethyl ether afforded in high yield and complete stereoselectivity penta‐ and hexasaccharide motifs from C. neoformans serotype A–C. The latter were deallylated into new acceptors to allow synthesis of larger CPS‐fragments.  相似文献   

7.
The protected apiose-containing disaccharide, benzyl O-(2,3, 3'-tri-O-acetyl-β-D-apiofuranosyl)-( 1→3)-2, 4-di-O-benzoyl-α-D-xylopyranoside, was synthesized and its X-ray structure provided.  相似文献   

8.
J. Boivin  C. Monneret  M. Pais 《Tetrahedron》1981,37(24):4219-4228
The preparation of the disaccharide 4 - O - (3,4 - di - O - acetyl - 2,6 - dideoxy - α - l - lyxo - hexopyranosyl) - 2, 3,6 - trideoxy - 3 - trifluoroacetamido - l - lyxo - hexopyranose, 11c, the N,N' - dimethyl derivative of which occurs naturally in numerous anthracyclines, is described. Glycosidation with daunomycinone followed by removal of the protecting groups led to 4' - O - (2 - deoxy - l - fucosyl) daunorubicine.  相似文献   

9.
Abstract

Glucuronic acid‐containing di‐ and trisaccharide thioglycoside building blocks, ethyl (benzyl 2,3,4‐tri‐O‐benzyl‐β‐D‐glucopyranosyluronate)‐(1 → 2)‐3‐O‐allyl‐4,6‐di‐O‐benzyl‐1‐thio‐α‐D‐mannopyranoside, ethyl (benzyl 2,3,4‐tri‐O‐benzyl‐β‐D‐glucopyranosyluronate)‐(1 → 2)‐6‐O‐acetyl‐3‐O‐allyl‐4‐O‐benzyl‐1‐thio‐α‐D‐mannopyranoside and ethyl (2,3,4‐tri‐O‐benzyl‐β‐D‐xylopyranosyl)‐(1 → 4)‐[(benzyl 2,3,4‐tri‐O‐benzyl‐β‐D‐glucopyranosyluronate)‐(1 → 2)]‐3‐O‐allyl‐6‐O‐benzyl‐1‐thio‐α‐D‐mannopyranoside, corresponding to repetitive structures in the capsular polysaccharide (CPS) of Cryptococcus neoformans, have been synthesized. The blocks contain an orthogonal allyl group in the 3‐position of the mannose residue to allow formation of the (1 → 3)‐linked mannan backbone of the CPS and benzyl ethers as persistent protecting groups to facilitate access to acetylated target structures. The glucuronic acid moiety was introduced using an acetylated trichloroacetimidate donor and the xylose residue employing the benzoylated bromo sugar to ensure β‐selectivity in the couplings. Exchange to benzyl protecting groups was then performed at the di‐ or trisaccharide level. Assembly of suitable blocks employing DMTST as promoter in diethyl ether then afforded, in high yield and with stereoselectivity, a protected pentasaccharide corresponding to a C. neoformans serotype D CPS structure.  相似文献   

10.
Reactions of E-4-ferrocenylpent-3-en-2-one with S-methyldithiocarbazate or S-benzyldithiocarbazate result in the formation of methyl 5-ferrocenyl-3,5-dimethyl-2-pyrazoline-1-dithiocarboxylate (1) or benzyl 5-ferrocenyl-3,5-dimethyl-2-pyrazoline-1-dithiocarboxylate (2). The single crystals of both products are obtained and their structures are identified by X-ray diffraction method with triclinic P-1 space groups. The cell parameters for compound 1 are as follows: a = 7.7029(8) Å, b = 10.1631(11) Å, c = 10.7305(12) Å, α = 101.3270(10)°, β = 90.6740(10)°, γ = 94.8390(10)°, and V = 820.40(15) Å3. For compound 2, the crystallographic data are: a = 7.953(3) Å, b = 10.970(5) Å, c = 12.534(3) Å, α = 84.718(5)°, β = 81.651(3)°, γ = 76.274(4)Å, and V = 1049.1(7) Å3.  相似文献   

11.
Five new triterpenoid saponins, including 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 1 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐O‐(6‐O‐acetyl)‐β‐d ‐glucopyranosyl‐(1→3)‐[β‐d ‐xylopyranosyl‐(1→4)]‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 2 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 3 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 4 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐O‐(6‐O‐acetyl)‐β‐d ‐glucopyranosyl‐(1→3)‐[β‐d ‐xylopyranosyl‐(1→4)]‐α‐l ‐rhamnopyranosyl‐(1→2)‐[(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 5 ) together with two known congeners, saponariosides A ( 6 ) and B ( 7 ) were isolated from the roots of Saponaria officinalis L. Their structures were elucidated by extensive spectroscopic methods, including 1D‐ (1H, 13C) and 2D‐NMR (DQF‐COSY, TOCSY, HSQC, and HMBC) experiments, HR‐ESI‐MS, and acid hydrolysis.  相似文献   

12.
The synthesis and X-ray single crystal study of two mixed-ligand Cu(II) complexes are performed: (CH3C(NCH3)CHC(O)CH3)(CF3C(O)CHC(O)CF3)Cu (1) (space group P21/c, a = 7.0848(12) Å, b = 17.854(3) Å, c = 11.837(2) Å, β = 100.495(6)°, V = 1472.4(4) Å3, Z = 4), (CH3C(NC6H5)CHC(O)CH3)· (CF3C(O)CHC(O)CF3)Cu (2) (space group P-1, a = 9.1119(4) Å, b = 9.6954(4) Å, c = 11.1447(6) Å, α = 113.784(2)°, β = 92.383(2)°, γ = 95.402(2)°, V = 893.52(7) Å3, Z = 2). The structures are molecular, formed from neutral mixed-ligand copper complexes. The central copper atom has the (3O+N) coordination environment with average Cu-O distances of 1.948 Å and Cu-N of 1.932 Å; the chelate O-Cu-N angle (average) is 94.0°. In the structures, the complexes are linked into dimeric associates with Cu…Cu distances of 3.197 Å (for 1) and 3.246 Å (for 2). The volatility of mixed-ligand complexes 1 and 2 is in between of that of the starting homo-ligand complexes.  相似文献   

13.
The conformational space of the trisaccharide α-L -Fuc-(1→2)-β- D -Gal-(1→3)-β -D -GalNAc-1-OPr ( 2 ) and of its component disaccharide moieties α -L -Fuc-(1→2)-β -D -Gal-1-OMe ( 3 ) and β -D -Gal-(1→3)-β- D -GalNAc-1-OPr ( 4 ) was investigated with the aid of molecular-mechanics energy minimizations and molecular-dynamics simulations. These calculations suggested the occurrence of two conformations for each compound characterized by different ? and Ψ glycosidic angles. However, 1H-NMR investigation of D2O solutions of 2–4 indicated a sure preference for one of the two conformers with a contribution of the other one ranging from negligible to low.  相似文献   

14.
5- Acetyl - 2' - deoxyuridine (1) has been synthesised by treating 2' - deoxy - 5 - ethynyluridine with dilute sulphuric acid. Condensation of the trimethylsilyl derivative of 5-acetyluracil with 2-deox-3, 5-di-O-p-toluoyl-α-d-erythropen chloride gave a mixture of α- and β-anomeric blocked nucleosides from which the α-anomer was isolated and the p-toluoyl groups removed to give 5 - acetyl -1 - (α - d - 2- deoxyerythropentofuranosyl) uracil. Only a poor yield of the β-anomer (1) was obtained by this procedure. The UV spectra and m.p. obtained for 1 differed from the values quoted in the literature. The crystals of 1 are monoclinic, space group P21, with a = 9.525, b = 12.16, c = 5.22 Å, β = 92.03° and two molecules in the unit cell. The structure was refined by least-squares calculations to R 3.4% for 1426 observed counter amplitudes. The pyrimidine ring is essentially planar with the acetyl group inclined at 6° to it. The sugar ring has the highly unusual C(4')-exo conformation and the arrangement about C(4')-C(5') is such that O(5') is oriented gauche with respect to both O(1') and C(3'). The glycosidic torsion angle O(1')-C(1')-N(1)-C(6) is 56° (anti conformation).  相似文献   

15.
A convergent chemical synthesis of a pentasaccharide found in the O-specific polysaccharide of Escherichia coli O4:K3, O4:K6, and O4:K12 has been achieved in excellent yield. A [3+2] block synthetic strategy has been adopted to couple a disaccharide donor 11 with a trisaccharide acceptor 10 for the construction of the pentasaccharide derivative 12 which on deprotection furnished target pentasaccharide 1 as its 4-methoxyphenyl glycoside. Disaccharide thioglycoside donor 11 and trisaccharide acceptor 10 were prepared from suitably protected monosaccharide intermediates. Yields were excellent in all steps.  相似文献   

16.
Results of electrical conductivity measurements, thermal analysis, and X-ray diffraction studies indicate the existence of four phases, between 295 K and the melting points, in the system (Cs1?yRby)Cu4Cl3I2. These phases are designated α, á β, γ in order of decreasing temperature. The α phase is isostructural with α-RbAg4I5; the á phase is also cubic and very likely belongs to space groupP213, a subgroup ofP4132 andP4332 to which the α phase belongs. There is a high probability that the á → α transition is continuous. The á → α transition is not discernible in the conductivity measurements or thermal analysis; therefore the line of á-α transitions is presently unknown. The β phase transforms to the á and the γ phase transforms to the β phase wheny ≤ 0.36; the γ phase transforms to the α phase wheny ≥ 0.36. That is, there is a triple point aty = 0.36, T = 399K. The γ-β, β-α′, and γ-α transitions are all hysteretic and are therefore first order. The conductivities of the β phases are relatively low and the enthalpies of activation relatively high. The conductivity of the β phase decreases with increasingy. The β phase probably belongs to space groupR3, in which the Cu+ ions can be ordered. The α and á phases are the true solid electrolytes; the conductivities are high, >0.73 Ω?1cm?1 at 419 K, and the enthalpies of activation of motion of the Cu+ ions low, 0.11 eV.In the system CsCu4Cl3(I2?xClx), 0 ≤ x ≤ 0.25, the Cl? for I? substitutions affect the transitions to only a small extent relative to the stoichiometric compound. The β phase occurs for allx and transforms to á.  相似文献   

17.
18.
A disaccharide compound, p‐methoxyphenyl 2,3,4‐tri‐O‐benzyl‐βL‐arabinopyranosyl‐(1→6)‐2‐O‐benzyl‐3,4‐di‐O‐acetyl‐βD‐galactopyranoside ( 17 ), was successfully synthesized from two monosaccharides L‐arabinose and D‐galactose and fully characterized. This compound can be used to build a natural product 4″‐O‐acetylmanan thoside B, which was isolated from the leaves and stems of a kind of Vietnamese Acanthaceae Justicia patentiflora.  相似文献   

19.
A novel dinuclear NiII complex, [Ni2(ntc)(H2O)10]·7(H2O) (1), with 1,4,5,8-naphthaenetetracarboxylate (ntc) has been synthesized and characterized by X-ray diffraction analysis, IR, UV-vis spectra and thermogravimetric analysis. Complex 1 crystallizes in triclinic system, space group P-1, a = 7.721(3) Å, b = 9.458(3) Å, c = 11.453(4) Å, α = 114.110(6)°, β = 92.184(6)°, γ = 107.472(6)°, V = 715.7(4) Å3, Z = 1, final R = 0.048. Each nickel atom is octahedrally coordinated by five aqua ligands and one oxygen atom of the bridging ntc connecting two nickel atoms. The resulting dinuclear NiII complex forms a 3D H-bonded network.  相似文献   

20.
《Tetrahedron: Asymmetry》2000,11(1):223-229
Two disaccharides, α-d-Manp-(1→2)-d-Manp 6 and α-d-Manp-(1→3)-d-Manp 7, were synthesised from mannose using the reverse hydrolysis activity of the partially purified α-mannosidases from almond (Prunus amygdalus) meal and limpets (Patella vulgata). Both disaccharides were isolated by carbon–Celite chromatography. Attempts were also made towards the synthesis of core pentasaccharide using the purified α-mannosidase from Aspergillus niger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号