首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Journal of voice》2023,37(2):303.e1-303.e14
ObjectiveThe aim of the study was to determine the individual variability of the severity of dysphonia in the population of older women and men using the initial perceptual voice assessment (GRBAS) and objective diagnosis of the clinical form of Presbyphonia with laryngeal visualization technique (High-Speed Digital Imaging [HSDI]) and acoustic voice analysis (Diagnoscope Specjalista).MethodsThe study included 302 elderly women and men. Application of perceptual GRBAS scale allowed to extract 230 subjects with voice disorders (Group I). Remaining 72 elderly subjects without the symptoms of dysphonia consisted Group II. Group III included 50 subjects with euphonic voice. In the assessment of dysphonia, visualization technique (HSDI) as well as acoustic method (Diagnoscope Specjalista). The observation of real vibration of vocal folds using HSDI technique and HS camera allowed to examine symmetricity (Shaw-Deliyski scale), periodicity and amplitude of vibration, Mucosal Wave (MW) morphology, Glottal Closure Type, and value of Open Quotient (OQ). Acoustic analysis allowed to assess value of Fundamental Frequency (F0), Maximum Phonation Time (MPT) as well as Jitter, Shimmer, Noise-to-Harmonics Ratio (NHR) parameters. Narrowband Spectrography was performed.ResultsHSDI technique allowed to register in elderly women with voice disorders a mild asymmetry and aperiodicity of vibrations, MW reduction, amplitude increase and glottal insufficiency in the posterior segment of glottis which indicated edematous changes in the larynx. In 90% of men in this group, moderate asymmetry and aperiodicity were observed as well as amplitude decrease, significant limitation of MW and glottal insufficiency in the middle segment of the glottis which indicated atrophic changes in the larynx. In remaining 10% of men, amplitude of vibration was increased which indicated the existence of hypofunctional dysphonia. Objective confirmation of glottal insufficiency in women with edematous changes was high value of OQ in posterior segment of the glottis registered with HSDI technique. In men with larynx atrophy, the value of OQ was the highest in the middle segment of the glottis. Glottal insufficiency, especially in the middle segment, coexisted with the increase of NHR parameter observed in acoustic examination and with numerous nonharmonic components in the scope of high frequencies revealed in narrowband spectrography, especially in men with larynx atrophy. What is more, in men, the increase of F0 and reduction of MPT was registered. In women with edematous changes of the larynx, acoustic analysis revealed decrease of F0 value, increase of Jitter, Shimmer, NHR as well as reduction of MPT. Narrowband sopectrography revealed not only harmonic components but also nonharmonics in the range of low, medium, and high frequencies.ConclusionsThe course of Presbyphonia varies individually in the elderly. In many subjects, the process of aging does not influence the quality of voice. Crucial importance in the diagnosis of Presbyphonia is assigned to High-Speed Digital Imaging technique which confirms the existence of edematous changes in the larynx in women as well as atrophy and hypofunctional dysphonia in men. The acoustic examination of voice confirmed the individual variability of the severity of Presbyphonia in the elderly depending on the clinical form of dysphonia determined by the gender of the diagnosed person.  相似文献   

2.
3.
Recent experimental studies have shown the existence of optimalvalues of the glottal width and convergence angle, at which the phonation threshold pressure is minimum. These results indicate the existence of an optimal glottal configuration for ease of phonation, not predicted by the previous theory. In this paper, the origin of the optimal configuration is investigated using a low dimensional mathematical model of the vocal fold. Two phenomena of glottal aerodynamics are examined: pressure losses due to air viscosity, and air flow separation from a divergent glottis. The optimal glottal configuration seems to be a consequence of the combined effect of both factors. The results agree with the experimental data, showing that the phonation threshold pressure is minimum when the vocal folds are slightly separated in a near rectangular glottis.  相似文献   

4.
A new numerical model of the vocal folds is presented based on the well-known two-mass models of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the incompressible Navier-Stokes equations. Glottal waves are produced using different initial glottal gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase of the glottal waves have been compared with values known from the literature. The phonation threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure obtained using the flow model with Navier-Stokes equations corresponds better to values determined in normal phonation than the phonation threshold pressure obtained using the flow model based on the Bernoulli equation. Using the Navier-Stokes equations, an increase of the subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.  相似文献   

5.
This study hypothesized that phonation threshold power is measureable and sensitive to changes in the biomechanical properties of the vocal folds. Phonation threshold power was measured in three sample populations of 10 excised canine larynges treated with variable posterior glottal gap, variable bilateral vocal fold elongation, and variable vocal fold lesioning. Posterior glottal gap varied from 0 to 4 mm in 0.5 mm intervals. Bilateral vocal fold elongation varied from 0% to 20% in 5% intervals. Vocal fold lesion treatments included unilateral and bilateral vocal fold lesion groups. Each treatment was investigated independently in a sample population of 10 excised canine larynges. Linear regression analysis indicated that phonation threshold power was sensitive to posterior glottal gap (R2 = 0.298, P < 0.001) and weakly to vocal fold elongation (R2 = 0.052, P = 0.003). A one-way repeated measures analysis of variance indicated that phonation threshold power was sensitive to the presence of lesions (P < 0.001). Theoretical and experimental evidence presented here suggests that phonation threshold power could be used as a broad screening parameter sensitive to certain changes in the biomechanical properties of the larynx. It has not yet been measured in humans, but because it has the potential to represent the airflow-tissue energy transfer more completely than the phonation threshold pressure or flow alone, it may be a more useful parameter than these and could be used to indicate that laryngeal health is likely abnormal.  相似文献   

6.
《Journal of voice》2023,37(2):298.e11-298.e29
IntroductionTypical singing registers are the chest and falsetto; however, trained singers have an additional register, namely, the mixed register. The mixed register, which is also called “mixed voice” or “mix,” is an important technique for singers, as it can help bridge from the chest voice to falsetto without noticeable voice breaks.ObjectiveThe present study aims to reveal the nature of the voice-production mechanism of the different registers (chest, mix, and falsetto) using high-speed digital imaging (HSDI), electroglottography (EGG), and acoustic and aerodynamic measurements.Study DesignCross-sectional study.MethodsAerodynamic measurements were acquired for twelve healthy singers (six men and women) during the phonation of a variety of pitches using three registers. HSDI and EGG devices were simultaneously used on three healthy singers (two men and one woman) from which an open quotient (OQ) and speed quotient (SQ) were detected. Audio signals were recorded for five sustained vowels, and a spectral analysis was conducted to determine the amplitude of each harmonic component. Furthermore, the absolute (not relative) value of the glottal volume flow was estimated by integrating data obtained from the HSDI and aerodynamic studies.ResultsFor all singers, the subglottal pressure (PSub) was the highest for the chest in the three registers, and the mean flow rate (MFR) was the highest for the falsetto. Conversely, the PSub of the mix was as low as the falsetto, and the MFR of the mix was as low as the chest. The HSDI analysis showed that the OQ differed significantly among the registers, even when the fundamental frequency was the same; the OQ of the mix was higher than that of the chest but lower than that of the falsetto. The acoustic analysis showed that, for the mix, the harmonic structure was intermediate between the chest and falsetto. The results of the glottal volume-flow analysis revealed that the maximum volume velocity was the least for the mix register at every fundamental frequency. The first and second harmonic (H1-H2) difference of the voice source spectrum was the greatest for the falsetto, then the mix, and finally, the chest.ConclusionsWe found differences in the registers in terms of the aeromechanical mechanisms and vibration patterns of the vocal folds. The mixed register proved to have a distinct voice-production mechanism, which can be differentiated from those of the chest or falsetto registers.  相似文献   

7.
Occurrences of period-doubling are found in human phonation, in particular for pathological and some singing phonations such as Sardinian A Tenore Bassu vocal performance. The combined vibration of the vocal folds and the ventricular folds has been observed during the production of such low pitch bass-type sound. The present study aims to characterize the physiological correlates of this acoustical production and to provide a better understanding of the physical interaction between ventricular fold vibration and vocal fold self-sustained oscillation. The vibratory properties of the vocal folds and the ventricular folds during phonation produced by a professional singer are analyzed by means of acoustical and electroglottographic signals and by synchronized glottal images obtained by high-speed cinematography. The periodic variation in glottal cycle duration and the effect of ventricular fold closing on glottal closing time are demonstrated. Using the detected glottal and ventricular areas, the aerodynamic behavior of the laryngeal system is simulated using a simplified physical modeling previously validated in vitro using a larynx replica. An estimate of the ventricular aperture extracted from the in vivo data allows a theoretical prediction of the glottal aperture. The in vivo measurements of the glottal aperture are then compared to the simulated estimations.  相似文献   

8.
Experiments using excised canine larynges were conducted to study the restoration of vocal efficiency in dehydrated larynges. Excised larynges were dehydrated with warm, dry air to the point that airflow through the approximated vocal folds would not entrain the folds to produce phonation. The dehydrated vocal folds were then bathed in a saline solution. The rehydrated larynges were then remounted on the bench apparatus that enabled phonation with a constant humidified airflow, and measurements were made of phonation threshold pressure, glottal airflow, and amplitude. Hydration resulted in significantly increased efficiency and decrease in phonation threshold pressure. The findings confirm clinical impressions that hydration is critical in the physiology of normal phonation.  相似文献   

9.
Negative damping and eigenmode synchronization as two different mechanisms of phonation onset are distinguished. Although both mechanisms lead to a favorable phase relationship between the flow pressure and the vocal fold motion as required for a net energy transfer into the vocal folds, the underlying mechanisms for this favorable phase relationship are different. The negative damping mechanism relies on glottal aerodynamics or acoustics to establish before onset and maintain after onset the favorable phase relationship, and therefore has minimum requirements on vocal fold geometry and biomechanics. A single degree-of-freedom vocal fold model is all that is needed for self-oscillation in the presence of a negative damping mechanism. In contrast, the mechanism of eigenmode synchronization critically depends on the geometrical and biomechanical properties of the vocal folds (at least 2-degrees-of-freedom are required), and has little requirement on the glottal aerodynamics other than flow separation. The favorable phase relation is established once synchronization occurs, regardless of the phase relationship imposed by glottal aerodynamics before onset. Unlike that of the negative damping mechanism, initiation of eigenmode synchronization requires neither a velocity-dependent flow pressure nor an alternating convergent-divergent glottis. The clinical implications of the distinctions between these two mechanisms are discussed.  相似文献   

10.
We present a comprehensive, functional analysis of clinical voice data derived from both high-speed digital imaging (HSDI) of the larynx and simultaneously acquired acoustic recordings. The goals of this study are to: (1) correlate dynamic characteristics of the vocal folds derived from direct laryngeal imaging with indirectly acquired acoustic measurements; (2) define the advantages of using a combined imaging/acoustic approach for the analysis of voice condition; and (3) identify new quantitative measures to evaluate the regularity of the vocal fold vibration and the complexity of the vocal output -- these measures will be key to successful diagnosis of vocal abnormalities. Image- and acoustic-based analyses are performed using an analytic phase plot approach previously introduced by our group (referred to as 'Nyquist' plot). Fast Fourier Transform (FFT) spectral analyses are performed on the same data for a comparison. Clinical HSDI and acoustic recordings from subjects having normal and specific voice pathologies, including muscular tension dysphonia (MTD) and recurrent respiratory papillomatosis (RRP) were analyzed using the Nyquist plot approach. The results of these analyses show that a combined imaging/acoustic analysis approach provides better characterization of the vibratory behavior of the vocal folds as it correlates with vocal output and pathology.  相似文献   

11.
A synthetic two-layer, self-oscillating, life-size vocal fold model was used to study the influence of the vocal tract and false folds on the glottal jet. The model vibrated at frequencies, pressures, flow rates, and amplitudes consistent with human phonation, although some differences in behavior between the model and the human vocal folds are noted. High-speed images of model motion and flow visualization were acquired. Phase-locked ensemble-averaged glottal jet velocity measurements using particle image velocimetry (PIV) were acquired with and without an idealized vocal tract, with and without false folds. PIV data were obtained with varying degrees of lateral asymmetric model positioning. Glottal jet velocity magnitudes were consistent with those measured using excised larynges. A starting vortex was observed in all test cases. The false folds interfered with the starting vortex, and in some cases vortex shedding from the false folds was observed. In asymmetric cases without false folds, the glottal jet tended to skew toward the nearest wall; with the false folds, the opposite trend was observed. rms velocity calculations showed the jet shear layer and laminar core. The rms velocities were higher in the vocal tract cases compared to the open jet and false fold cases.  相似文献   

12.
The influence of vocal fold geometry and stiffness on phonation onset was experimentally investigated using a body-cover physical model of the vocal folds. Results showed that a lower phonation threshold pressure and phonation onset frequency can be achieved by reducing body-layer or cover-layer stiffness, reducing medial surface thickness, or increasing cover-layer depth. Increasing body-layer stiffness also restricted vocal fold motion to the cover layer and reduced prephonatory glottal opening. Excitation of anterior-posterior modes was also observed, particularly for large values of the body-cover stiffness ratio. The results of this study were also discussed in relation to previous theoretical and experimental studies.  相似文献   

13.
The objective of this study was to investigate the underlying laryngeal mechanisms during the specific human 4-kHz vocalization. The laryngeal configuration during this vocalization was measured using high-resolution computerized tomographic scan and videostrobolaryngoscopy. The color Doppler imaging (CDI) of medical ultrasound was used to detect the vibrations of glottal and supraglottal mucosa. During the 4-kHz vocalization, the ventricular folds were adducted in the shape of a bimodal chink and the vocal folds were shaped as a "V" with an opening at the posterior glottis. In the coronal view, the laryngeal ventricles had collapsed and a divergent shaped conduit was observed at the posterior portion of the larynx. The surface mucosa vibration detected by CDI was noted over the bilateral ventricular folds and aryepiglottic folds. The vibration displacement was estimated to be on the order of 0.1mm. This vibration amplitude was too small to be detected in videostrobolaryngoscopy. The laryngeal configuration and CDI data suggested a diffuser jet with periodic vorticity bursts in the larynx producing 4 kHz voice.  相似文献   

14.
In this study, we evaluated the relationship between laryngeal function measures and glottal gap ratio and normalized measures of supraglottic behaviors in patients with unilateral vocal fold paresis (UVFP). Thirty-one patients were found to have unilateral vocal fold paresis by videoendoscopy and laryngeal electromyography, and 13 controls participated in this study. Patients with UVFP demonstrated significantly larger glottal gap ratios (p = 0.016) than control subjects. The nonparalyzed or contralateral vocal fold was associated with significantly more static false vocal fold compression (p = 0.03) compared with the paralyzed vocal fold or with the controls. Patients with unilateral vocal fold paresis were divided into subgroups: those with normal or abnormal maximum phonation time, flow, or pressure measures. Smaller glottal gap ratios were identified in patients with normal maximum phonation times and flow measures. Greater false vocal fold activity was identified in unilateral vocal fold paresis patients with normal laryngeal function measures than in unilateral vocal fold paresis patients with abnormal measures. These findings suggest that some patients with documented unilateral paresis and glottal incompetence can compensate for vocal fold weakness such that their acoustic and aerodynamic measures are normal.  相似文献   

15.
Measurements of air pressure and flow were made using an in vivo canine model of the larynx. Subglottic pressures at varying flow rates were taken during phonation induced by laryngeal nerve stimulation. Results showed that during constant vocal fold stiffness, subglottic pressure rose slightly with increased air flow. The larynx in the in vivo canine model exhibited a flow-dependent decrease in laryngeal airway resistance. Increasing flow rate was associated with an increase in frequency of phonation and open quotient, as measured glottographically. Results from this experiment were compared with a theoretical two-mass model of the larynx and other theoretical models of phonation. The influence of aerodynamic forces on glottal vibration is explained by increased lateral excursion of the vocal folds during the open interval and shortening of the closed interval during the glottal cycle.  相似文献   

16.
Voice quality in patients with vocal fold paralysis can be affected by several factors, such as the position of the paralyzed vocal fold, its degree of atrophy, the configuration of its free edge, and the level differences between both vocal folds. Depending on the related vocal deficiency the patient will attempt to compensate using different maneuvers, such as increment of vocal tract and neck muscle contraction to improve glottal closure. This is probably one of the reasons why ventricular folds are frequently requested. The objective of this study is to analyze the behavior of the homolateral and contralateral vestibular folds to delineate patterns of vestibular motion during sustained phonation, in cases of unilateral vocal fold paralysis.  相似文献   

17.
Geometry of the human vocal folds strongly influences their oscillatory motion. While the effect of intraglottal geometry on phonation has been widely investigated, the study of the geometry of the inferior surface of the vocal folds has been limited. In this study the way in which the inferior vocal fold surface angle affects vocal fold vibration was explored using a two-dimensional, self-oscillating finite element vocal fold model. The geometry was parameterized to create models with five different inferior surface angles. Four of the five models exhibited self-sustained oscillations. Comparisons of model motion showed increased vertical displacement and decreased glottal width amplitude with decreasing inferior surface angle. In addition, glottal width and air flow rate waveforms changed as the inferior surface angle was varied. Structural, rather than aerodynamic, effects are shown to be the cause of the changes in model response as the inferior surface angle was varied. Supporting data including glottal pressure distribution, average intraglottal pressure, energy transfer, and flow separation point locations are discussed, and suggestions for future research are given.  相似文献   

18.
19.
Werner's syndrome (WS) is a rare hereditary disorder which is characterized by clinical signs of premature aging. A 31-year-old man presented with a 12-year history of hoarseness. Also noted were diabetes mellitus, cataracts, scleroderma-like skin atrophy, osteoporosis, and hypogonadism. A clinical diagnosis of WS was made. Laryngoscopy revealed bowed vocal folds resulting in a spindle-shaped closure with glottal incompetence during phonation. We used Gortex for medialization of the middle part of vocal fold to correct the glottal gap in this patient. Despite correction of glottal incompetence in patients with WS, quality of voice could not be improved to that of age-matched normal individuals.  相似文献   

20.
The membranous contact quotient (MCQ) is introduced as a measure of dynamic glottal competence. It is defined as the ratio of the membranous contact glottis (the anterior-posterior length of contact between the two membranous vocal folds) and the membranous vocal fold length. An elliptical approximation to the vocal fold contour during phonation was used to predict MCQ values as a function of vocal process gap (adduction), maximum glottal width, and membranous glottal length. MCQ is highly dependent on the vocal process gap and the maximum glottal width, but not on vocal fold length. Five excised larynges were used to obtain MCQ data for a wide range of vocal process gaps and maximum glottal widths. Predicted and measured MCQ values had a correlation of 0.93, with an average absolute difference of 9.6% (SD = 10.5%). The model is better at higher values of MCQ. The theory for MCQ is also expressed as a function of vocal process gap and subglottal pressure to suggest production control potential. The MCQ measure is obtainable with the use of stroboscopy and appears to be a potentially useful clinical measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号