首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
Novolac resins having cardanol‐to‐formaldehyde mole ratios of 1:0.4, 1:0.5, and 1:0.6 were prepared by using aromatic sulphonic acid as the catalyst at four different temperatures ranging between 90°C and 120°C, with an interval of 10°C. Free formaldehyde and free phenol contents were determined at regular time intervals to check the completion of the reaction. The synthesized novolacs were characterized by Fourier‐transform infrared spectroscopic analysis, nuclear magnetic resonance, and gel permeation chromatography. The reaction between cardanol and formaldehyde was found to follow second‐order kinetics. The overall rate constant (k) increased with the increase of temperature. On the basis of the value of k, various other activation parameters such as activation energy (Ea), change in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) of the reaction were also evaluated. It was found that the condensation reaction of cardanol and formaldehyde with aromatic sulphonic acid was nonspontaneous and irreversible. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 559–572, 2009  相似文献   

2.
A novel phosphorus‐containing aralkyl novolac (Ar‐DOPO‐N) was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) first with terephthaldicarboxaldehyde and subsequently with phenol. The chemical structures of the synthesized compounds were characterized with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. Ar‐DOPO‐N blended with phenol formaldehyde novolac was used as a curing agent for o‐cresol formaldehyde novolac epoxy, resulting in cured epoxy resins with various phosphorus contents. The epoxy resins exhibited high glass‐transition temperatures (159–177 °C), good thermal stability (>320 °C), and retardation on thermal degradation rates. High char yields and high limited oxygen indices (26–32.5) were observed, indicating the resins' good flame retardance. Using a melamine‐modified phenol formaldehyde novolac to replace phenol formaldehyde novolac in the curing composition further enhanced the cured epoxy resins' glass‐transition temperatures (160–186 °C) and limited oxygen index values (28–33.5). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2329–2339, 2002  相似文献   

3.
A kinetic study of the reaction of cardanol and maleic anhydride (MA) (mole ratios 1:0.25, 1:0.5, 1:0.75, 1:1) was carried out at five different temperatures ranging between 160 and 180°C with an interval of 5°C using paratoluene sulfonic acid (PTSA) as a catalyst. The acid values of the samples were checked at a regular time intervals to check the percentage of the completion of the reaction. The influence of the condensation temperature on the synthesized resins was studied using infrared spectroscopic analysis. The reaction between cardanol and MA was found to obey first‐order rate kinetics. The specific rate constant (k) calculated by regression analysis was found to obey the Arrhenius expression. The thermodynamic parameters such as activation energy (Ea), frequency factor (Z), entropy (∆S), enthalpy (∆H), and free energy (∆G) were calculated. It was found that the reaction was spontaneous and irreversible. The experimental results were explained by proposing a reaction mechanism and deriving the rate equation.  相似文献   

4.
Novel phenolic novolac resins, bearing maleimide groups and capable of undergoing curing principally through the addition polymerization of these groups, were synthesized by the polymerization of a mixture of phenol and N‐(4‐hydroxy phenyl)maleimide (HPM) with formaldehyde in the presence of an acid catalyst. The polymerization conditions were optimized to get gel‐free resins. The resins were characterized by chemical, spectral, and thermal analyses. Differential scanning calorimetry and dynamic mechanical analysis revealed an unexpected two‐stage curing for these systems. Although the cure at around 275°C was attributable to the addition polymerization reaction of the maleimide groups, the exotherm at around 150 to 170°C was ascribed to the condensation reaction of the methylol groups formed in minor quantities on the phenyl ring of HPM. Polymerization studies of non‐hydroxy‐functional N‐phenyl maleimides revealed that the phenyl groups of these molecules were activated toward an electrophilic substitution reaction by the protonated methylol intermediates formed by the acid‐catalyzed reaction of phenol and formaldehyde. On a comparative scale, HPM was less reactive than phenol toward formaldehyde. The presence of the phenolic group on N‐phenyl maleimide was not needed for its copolymerization with phenol and formaldehyde. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 641–652, 2000  相似文献   

5.
A boron‐containing phenol–formaldehyde resin (BPFR) was synthesized from boric acid, phenol, and paraformaldehyde. The curing reaction of BPFR was studied by Fourier‐transform infrared spectrometry and differential scanning calorimetry. According to the heat evolution behavior during the curing process, several influencing factors on isothermal curing reaction were evaluated. The results show that the isothermal kinetic reaction of BPFR follows autocatalytic kinetics mechanism, and kinetic parameters m, n, k1, and k2, were derived, respectively. In the latter reaction stage, the curing reaction becomes controlled mainly by diffusion. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 638–644, 2002  相似文献   

6.
Two kinds of applicable polymeric pH indicators were synthesized by the reaction of phenolphthalein and o‐cresolphthalein with formaldehyde under alkaline conditions by a one‐pot method. The synthesized products were fully characterized with Fourier transform infrared, 1H NMR, ultraviolet–visible spectroscopy, and gel permeation chromatography. The results indicated that the reaction was a typical phenol formaldehyde reaction. The dosage of formaldehyde and the reaction time were well controlled to obtain soluble polymers, instead of crosslinked products. The polymeric‐pH‐indicator‐immobilized poly(vinyl alcohol) (PVA) membranes were easily fabricated and had good long‐term stability under highly basic conditions and a fast equilibrium response. Moreover, the phenolphthalein formaldehyde immobilized PVA membrane had a linear response from pH 10.0 to 14.0, and so it has promise as a optical transducer for high pH value determinations. The o‐cresolphthalein formaldehyde immobilized PVA membrane had a nonlinear response from pH 9.0 to 13.0. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1019–1027, 2005  相似文献   

7.
A novel polycyclic dihydroxy diimide monomer was synthesized through the photocycloaddition of N‐methylolmaleimide to benzene and the reaction of maleimide–benzene photoadduct with formaldehyde. The monomer, which evolved formaldehyde at about 165 °C, was subsequently used to prepare low molecular weight polyamineimides and polyurethaneimides. Soluble polyamineimides, prepared with three different aromatic diamine monomers, exhibited initial decomposition temperatures between 277 and 329 °C and glass‐transition temperatures between 180 and 219 °C. An aliphatic polyamineimide prepared from 1,6‐hexanediamine was insoluble and had glass‐transition and initial decomposition temperatures of 225 °C and 294 °C, respectively, with prior loss of formaldehyde from end groups. Polyurethaneimides prepared with two aromatic diisocyanates showed loss of formaldehyde in the approximate range of 160–169 °C followed by loss of CO2 and glass‐transition temperatures of 219 and 233 °C. Attempts to prepare polyamideimides resulted in oligomers with a low nitrogen content. Attempts to prepare polyesterimides were unsuccessful. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2645–2651, 2000  相似文献   

8.
A polymer bearing 1,3‐benzoxazine moiety in the side chain was synthesized successfully from poly(allylamine) based on a stepwise strategy consisted of three steps: (1) treatment of poly(allylamine) with salicylaldehyde to convert the amino group in the side chain into the corresponding o‐(iminomethyl)phenol moiety, (2) reduction of the o‐(iminomethyl)phenol to obtain the corresponding o‐(aminomethyl)phenol moiety, and (3) formation of 1,3‐benzoxazine moiety by the reaction of the o‐(aminomethyl)phenol with formaldehyde. The content ratio of benzoxazine moieties and o‐(aminomethyl)phenol moieties in the polymer were tunable by varying amount of formaldehyde. The presence of o‐(aminomethyl)phenol moieties exhibited a significant promoting effect on the crosslinking reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
A trifunctional benzoxazine, 1,3,5‐tris(3‐phenyl‐3,4‐dihydro‐2H‐benzo[1,3]oxazin‐6‐yl)benzene (T‐Bz) was synthesized and in an effort to reduce its curing temperature (curing maxima at 238 °C), it was mixed with various phenolic nucleophiles such as phenol (PH), p‐methoxy phenol (MPH), 2‐methyl resorcinol (MR), hydroquinone (HQ), pyrogallol (PG), 2‐naphthol (NPH), 2,7‐dihydroxy naphthalene (DHN), and 1,1'‐bi‐2‐naphthol (BINOL). The influence of these phenolic nucleophiles on ring‐opening polymerization temperature of T‐Bz was examined by DSC and FTIR analysis. T‐Bz undergoes a complete ring‐opening addition reaction in the presence of bi‐ and trifunctional phenolic nucleophiles (MR/HQ/PG/DHN) at 140 °C (heated for 3 h) and forms a networked polybenzoxazine (NPBz). The NPBzs showed a high thermal stability with Td20 of 350–465 °C and char yield of 67–78% at 500 °C; however, a diminutive weight loss (6.9–9.8%) was observed at 150–250 °C (Td5: 215–235 °C) due to degradation of phenolic end groups. This article also gives an insight on how the traces of phenolic impurities can alter the thermal properties of pure benzoxazine monomer as well as its corresponding polymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2811–2819  相似文献   

10.
Polycondensates containing sulfonate groups, referred to as concrete superplasticizers, are widely used in the construction industry. A sulfanilic acid–phenol–formaldehyde polycondensate (SPF) with Mw ≈ 100.000 g · mol–1 was synthesized from sulfanilic acid, phenol and formaldehyde by polycondensation reaction, and its intercalation into hydrocalumite type Layered Double Hydroxide (LDH) was investigated. Preparation was done by rehydration of tricalcium aluminate, a cement constituent, in the presence of the polymer. According to the XRD pattern, SPF was successfully intercalated. A d value of approx. 2.6 nm was found. Elemental composition of the new organo‐mineral phase reveals charge balancing of the cationic LDH main layers by the polycondensate. Thermogravimetry indicates that thermal degradation of intercalated SPF occurs at higher temperature, compared to non‐intercalated SPF. According to SEM imaging, the novel Ca‐Al‐LDH phase exhibits the morphology of intergrown platelets. Ultra‐thin nanosheets (foils) with approx. 50 nm thickness were obtained. The layered structure and d value obtained from diffraction analysis were confirmed by TEM imaging. The new hydride can be used as cement and concrete additive.  相似文献   

11.
A novel diamine, bis(3‐aminophenyl)‐4‐(1‐adamantyl)phenoxyphenyl phosphine oxide (mDAATPPO), was synthesized via the Williamson ether reaction of 4‐(1‐adamantyl)phenol and bis(3‐nitrophenyl)‐4‐fluorophenyl phosphine oxide, followed by reduction. The phenol group was prepared by the Friedel–Crafts reaction of 1‐bromoadamantane and phenol, whereas the phosphine oxide group was synthesized by the Grignard reaction of 1‐bromo‐4‐fluorobezene and diphenyl phosphinic chloride, followed by nitration. The monomer and its intermediate compounds were characterized with Fourier transform infrared, NMR, and melting‐point apparatus. The monomer was then used to prepare polyimides with 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐oxydiphthalic dianhydride, and pyromellitic dianhydride by the conventional two‐step synthesis: the preparation of poly(amic acid) followed by solution imidization. The molecular weights of the polyimides were controlled to 20,000 g/mol by off‐stoichiometry, and the synthesized polyimides were characterized with Fourier transform infrared, NMR, gel permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry. In addition, the solubility, intrinsic viscosity, dielectric constant, and birefringence of the polyimides were evaluated. Novel polyimides with mDAATPPO exhibited good solubility, high glass‐transition temperatures (290–330 °C), excellent thermal stability (>500 °C), low dielectric constants (2.77–3.01), low refractive indices, and low birefringence values (0.0019–0.0030). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2567–2578, 2006  相似文献   

12.
We report side chain urethane–methacrylate comb polymers based on the renewable resource cardanol and its saturated analogue 3‐pentadecyl phenol and their self‐assembly into pores, spheres, vesicles, tubes, and so forth. The monomers were synthesized in one pot by coupling 1 equiv. of isophorone diisocyanate with 1 equiv. of cardanol/pentadecyl phenol followed by coupling with 1 equiv. of hydroxyethyl methacrylate. They were polymerized free radically using benzoyl peroxide as the initiator and were characterized by NMR and FTIR, and their molecular weights were determined by gel permeation chromatography. The unique polymer design had sites for self‐organization via hydrogen bonding of the side chain urethane units, π–π stacking interactions of the aromatic units as well as interdigitation of the long C15 alkyl side chains in the polymer. The morphologies of solvent cast polymer films were studied using microscopic techniques such as scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The polymers exhibited three‐dimensional honeycomb morphology in CHCl3, whereas in tetrahydrofuran, they formed spheres. The direct cardanol‐derived polymer PCIH showed a tendency for multiple morphologies such as spheres and tubes in tetrahydrofuran. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2996–3009, 2009  相似文献   

13.
The reaction kinetics of 2‐bromo‐5‐nitro thiophene with piperidine was studied in a solvent with a mixture of propan‐2‐ol with methanol and n‐hexane at 25°C. The measured rate coefficients of the reaction demonstrated dramatic variations in propan‐2‐ol–n‐hexane mixtures and mild variations in propan‐2‐ol–methanol system. The second‐order rate coefficients of the reaction, kA, decreased sharply with n‐hexane content. The multiparameter correlation of log kA versus molecular‐microscopic solvent parameters shows interesting results in these solutions. Linear free energy relationship investigations confirm that polarity has a major effect on the reaction rate and hydrogen bond ability of the media has a slight effect on the reaction rate. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 185–190, 2011  相似文献   

14.
A kind of fluorescent oligomeric pH indicator (fluorescein–formaldehyde product) was synthesized by the reaction of fluorescein with formaldehyde under alkaline conditions by a one‐pot method. The synthesized product was fully characterized with Fourier transform infrared, 1H NMR, ultraviolet–visible spectra, luminescence spectra, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra. The results indicated that the reaction was a typical phenol–formaldehyde reaction and that the fluorescein–formaldehyde product contained dimer, trimer, tetramer, and even a little octamer. Visible spectra and luminescence spectra showed that the fluorescein–formaldehyde product could still provide pH sensitivity similar to that of fluorescein. In addition, the oligomeric pH indicator immobilized poly(vinyl alcohol) membranes could be easily fabricated and achieved better long‐term stability and fast equilibrium response. Thus, they are promising transparent membranes for optical pH sensors of a wide pH range (0.0–10.0) based on absorption and fluorescence. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3447–3453, 2005  相似文献   

15.
Free energy profiles for the proton transfer reactions in hydrogen‐bonded complex of phenol with trimethylamine in methyl chloride solvent are studied with the reference interaction site model self‐consistent field method. The reactions in both the electronic ground and excited states are considered. The second‐order Møller‐Plesset perturbation (MP) theory or the second‐order multireference MP theory is used to evaluate the effect of the dynamical electron correlation on the free energy profiles. The free energy surface in the ground state shows a discrepancy with the experimental results for the related hydrogen‐bonded complexes. To resolve this discrepancy, the effects of chloro‐substitutions in phenol are examined, and its importance in stabilizing the ionic form is discussed. The temperature effect is also studied. In contrast to the ground state, the ππ* excited state of phenol–trimethylamine complex exhibits the proton transfer reaction with a low barrier. The reaction is almost thermoneutral. This is attributed to the reduction of proton affinity of phenol by the ππ* electronic excitation. We further examine the possibility of the electron–proton–coupled transfer in the ππ* state through the surface crossing with the charge transfer type πσ* state. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

16.
High‐molecular‐weight polybenzoxazine prepolymers containing polydimethylsiloane unit in the main‐chain have been synthesized from α,ω‐bis(aminopropyl)polydimethylsiloxane (PDMS) (molecular weight = 248, 850, and 1622) and bisphenol‐A with formaldehyde. Moreover, another type of prepolymers was prepared using methylenedianiline (MDA) as codiamine with PDMS. The weight average molecular weight of the obtained prepolymers was estimated from size exclusion chromatography to be in the range of 8000–11,000. The chemical structures of the prepolymers were investigated by 1H NMR and IR analyses. The prepolymers gave transparent free standing films by casting their dioxane solution. The prepolymer films after thermally cured up to 240 °C gave brown colored transparent and flexible polybenzoxazine films. Tensile test of the films revealed that the elongation at break increased with increasing the molecular weight of PDMS unit. Dynamic mechanical analysis of the thermosets showed that the Tgs were as high as 238–270 °C. The thermosets also revealed high thermal stability as evidenced by the 5% weight loss temperatures in the range of 324–384 °C from thermogravimetic analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Several phenol‐urea‐formaldehyde (PUF) cocondensed resol resins were synthesized by different procedures. The curing kinetics and network properties of these PUF resins were examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). A kinetic study indicated that the activation energy values of PUF resins are generally higher than those of phenol‐formaldehyde (PF) resins during curing processes, but the curing rates of PUF resins are faster than those of PF resins. The pH values of PUF systems have a significant influence on the rate constants, although they affect the activation energy very slightly. Moreover, the dependence of activation energy on the conversion showed that there are more individual reactions with different activation energies occurring during the curing processes in PUF resins than in PF resins. The decomposition of methylene ether bridges to form methylene bridges probably occurs at high temperature in PUF resins. DMTA data indicated that the network rigidity of PUF resins is slightly lower than that of PF resin. The gel point and Ttan δ2 transition measured by DMTA were consistent with the kinetic results obtained from the DSC data, but they were also related to the physical and mechanical properties of the network, especially with regard to the Ttan δ2 transition. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1929–1938, 2003  相似文献   

18.
The reaction of peroxomonosulfate (PMS) with glycolic acid (GLYCA), an alpha hydroxy acid, in the presence of Ni(II) ions and formaldehyde was studied in the pH range 4.05–5.89 and at 31°C and 38°C. When formaldehyde and Ni(II) ions concentrations are ~5.0 × 10?4 M to 10.0 × 10?4 M, the reaction is second order in PMS concentration. The rate is catalyzed by formaldehyde, and the observed rate equation is (?d[PMS])/dt = (k2[HCHO][Ni(II)][PMS]2)/{[H+](1+K2[GLYCA])}. The number of PMS decomposed for each mole of formaldehyde (turnover number) is 5–10, and the major reaction product is oxygen gas. The first step of the reaction mechanism is the formation of hemiacetal by the interaction of HCHO with the hydroxyl group of nickel glycolate. The peroxomonosulfate intermediate of the Ni‐hemiacetal reacts with another molecule of PMS in the rate‐limiting step to give the product. This reaction is similar to the thermal decomposition of PMS catalyzed by Ni(II) ions. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 642–649, 2009  相似文献   

19.
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006  相似文献   

20.
A new series of Brønsted–Lewis acidic diethyldisulfoammonium chlorometallates, [DEDSA][FeCl4] and [DEDSA]2[Zn2Cl6], were synthesized as solid materials from the reaction of [(Et)2N(SO3H)2][Cl] ionic liquid with transition metal chlorides (FeCl3 and ZnCl2) at 80 °C in neat condition for 2 h. The chlorometallates were fully characterized using various spectroscopic and analytical techniques such as Fourier transform infrared, UV–visible and Raman spectroscopies, powder X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and thermogravimetric analyses, Hammett acidity and elemental analyses. Their catalytic activity was studied as reusable heterogeneous catalysts for the three‐component synthesis of novel 14‐aryl‐7‐(N‐phenyl)‐14H‐dibenzo[a,j]acridines under solvent‐free conditions at 100 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号