首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The investigation of the cure kinetics of a diglycidyl ether of bisphenol A (DGEBA)/phenol‐novolac blend system with different phenolic contents initiated by a cationic latent thermal catalyst [N‐benzylpyrazinium hexafluoroantimonate (BPH)] was performed by means of the analysis of isothermal experiments using a differential scanning calorimetry (DSC). Latent properties were investigated by measuring the conversion as a function of curing temperature using a dynamic DSC method. The results indicated that the BPH in this system for cure is a significant thermal latent initiator and has good latent thermal properties. The cure reaction of the blend system using BPH as a curing agent was strongly dependent on the cure temperature and proceeded through an autocatalytic kinetic mechanism that was accelerated by the hydroxyl group produced through the reaction between DGEBA and BPH. At a specific conversion region, once vitrification took place, the cure reaction of the epoxy/phenol‐novolac/BPH blend system was controlled by a diffusion‐control cure reaction rather than by an autocatalytic reaction. The kinetic constants k1 and k2 and the cure activation energies E1 and E2 obtained by the Arrhenius temperature dependence equation of the epoxy/phenol‐novolac/BPH blend system were mainly discussed as increasing the content of the phenol‐novolac resin to the epoxy neat resin. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2945–2956, 2000  相似文献   

2.
The investigation of cure kinetics and relationships between glass transition temperature and conversion of biphenyl epoxy resin (4,4′-diglycidyloxy-3,3′,5,5′-tetramethyl biphenyl) with different phenolic hardeners was performed by differential scanning calorimeter using an isothermal approach over the temperature range 120–150°C. All kinetic parameters of the curing reaction including the reaction order, activation energy, and rate constant were calculated and reported. The results indicate that the curing reaction of formulations using xylok and dicyclopentadiene type phenolic resins (DCPDP) as hardeners proceeds through a first-order kinetic mechanism, whereas the curing reaction of formulations using phenol novolac as a hardener goes through an autocatalytic kinetic mechanism. The differences of curing reaction with the change of hardener in biphenyl epoxy resin systems were explained with the relationships between Tg and reaction conversion using the DiBenedetto equation. A detailed cure mechanism in biphenyl-type epoxy resin with the different hardeners has been suggested. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 773–783, 1998  相似文献   

3.
The reaction of 4,4′‐biphenol and two species of bromoalkanes (e.g., bromoethane and 1‐bromobutane) to synthesize two symmetric products (4,4′‐diethanoxy biphenyl and 4,4′‐dibutanoxy biphenyl) and one asymmetric product (4‐ethanoxy, 4′‐butanoxy biphenyl) was successfully carried out under two‐phase phase‐transfer catalysis conditions. A rational mechanism and kinetic model were built up by considering the reactions both in aqueous phase and in organic phase. The first active catalyst (QO(Ph)2OQ) was also synthesized under two‐phase reaction and was identified by instruments. The experimental data were explained satisfactorily by the pseudo‐steady‐state hypothesis. Two sets of rate constants of organic reactions, i.e. primary (k1 and k2) and secondary (k11, k12, k21, and k22) rate constants participate in the kinetic model. The two primary rate constants were obtained individually via experimental data for synthesizing the symmetric products. The ratios of the other four secondary rate constants were obtained from the reaction of synthesizing asymmetric products and determined from the initial yield rates of symmetric products. The effects of the ratio of bromoethane and 1‐bromobutane, temperature, organic solvents, amount of catalyst, and amount of sodium hydroxide on the reaction rate and the selectivity of products were investigated in detail. The results were explained satisfactorily by the interaction between the reactants and the environmental species. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 139–153, 2003  相似文献   

4.
The kinetics of the cure reaction for systems of bisphenol‐S epoxy resin with 4,4′‐diaminodiphenyl ether or phthalic anhydride as a curing agent were investigated with a differential scanning calorimetry. Autocatalytic behavior was shown in the first stages of the cure for the systems, which could be well described by the model proposed by Kamal [Polym Eng Sci 1973, 13, 59–64] that includes two rate constants k1 and k2 and two reaction orders, m and n. k1 and k2 values are observed to increase with the increasing temperature. With the proceeding of the cure reaction, the cross‐linking structure appears, and the reaction is mainly controlled by diffusion in the latter stages. The molecular mechanism of the curing system was discussed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 558–563, 2001  相似文献   

5.
The kinetics of the polycondensation and copolycondensation reactions of bis(3‐hydroxypropyl) terephthalate (BHPT) and bis(4‐hydroxybutyl) terephthalate (BHBT) as monomers were investigated at 270 °C in the presence of titanium tetrabutoxide as a catalyst. BHPT was prepared by the ester interchange reaction of dimethyl terephthalate and 1,3‐propanediol (1,3‐PD). Through the same method adopted for BHPT synthesis, BHBT was prepared with 1,4‐butanediol instead of 1,3‐PD. With second‐order kinetics applied for polycondensation, the rate constants of the polycondensation of BHPT and BHBT, k11 and k22, were calculated to be 4.08 and 4.18 min?1, respectively. The rate constants of the cross reactions in the copolycondensation of BHPT and BHBT, k12 and k21, were calculated with results obtained from proton nuclear magnetic resonance spectroscopy analysis. The rate constants during the copolycondensation of BHPT and BHBT at 270 °C decreased in the order k12 > k22 > k11 > k21, indicating that the reactivity of BHBT was larger than that of BHPT at 270 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2435–2441, 2002  相似文献   

6.
The oxidation of glycolic, lactic, malic, and a few substituted mandelic acids by 2,2′‐bipyridinium chlorochromate (BPCC) in dimethylsulphoxide leads to the formation of corresponding oxoacids. The reaction is first order each in BPCC and the hydroxy acids. The reaction is catalyzed by the hydrogen ions. The hydrogen ion dependence has the form: kobs = a + b [H+]. The oxidation of α‐deuteriomandelic acid exhibited a substantial primary kinetic isotope effect (kH/kd = 5.29 at 303 K). Oxidation of p‐methylmandelic acid was studied in 19 different organic solvents. The solvent effect has been analyzed by using Kamlet's and Swain's multiparametric equations. A mechanism involving a hydride ion transfer via a chromate ester is proposed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 248–254, 2002  相似文献   

7.
A novel phosphorus‐containing aralkyl novolac (Ar‐DOPO‐N) was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) first with terephthaldicarboxaldehyde and subsequently with phenol. The chemical structures of the synthesized compounds were characterized with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. Ar‐DOPO‐N blended with phenol formaldehyde novolac was used as a curing agent for o‐cresol formaldehyde novolac epoxy, resulting in cured epoxy resins with various phosphorus contents. The epoxy resins exhibited high glass‐transition temperatures (159–177 °C), good thermal stability (>320 °C), and retardation on thermal degradation rates. High char yields and high limited oxygen indices (26–32.5) were observed, indicating the resins' good flame retardance. Using a melamine‐modified phenol formaldehyde novolac to replace phenol formaldehyde novolac in the curing composition further enhanced the cured epoxy resins' glass‐transition temperatures (160–186 °C) and limited oxygen index values (28–33.5). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2329–2339, 2002  相似文献   

8.
1,3‐Dipolar cycloaddition of methyl diazoacetate to methyl acrylate was investigated by kinetic 1Н NMR spectroscopy. It was established that the mechanism of the process includes parallel formation of trans‐ and cis‐dimethyl‐4,5‐dihydro‐3H‐pyrazol‐3,5‐dicarboxylates as a result of [3 + 2]‐cycloaddition of methyl diazoacetate to methyl acrylate; the corresponding rate constants were denoted k1t and k1c. The reaction rate of the isomerization of 3Н‐pyrazolines to 4,5‐dihydro‐1H‐pyrazol‐3,5‐dicarboxylate (3Н → 1Н‐pyrazoline rearrangement) was found to be sensitive to both the methyl acrylate (k2t, k2c) and 1Н‐pyrazoline concentrations (k3t, k3c). Kinetic analysis showed that the proposed scheme is valid for various reagent concentrations. The numerical solution of the system of differential equations corresponded to the reaction scheme and was used to determine the complete set of reaction rate constants (k (× 105 M–1·s–1), 298 K; solvent, benzene‐d6): k1t = 2.3 ± 0.3, k1c = 1.6 ± 0.2, k2t = 1.1 ± 0.3, k2c = 1.8 ± 0.5, k3t = 1.2 ± 0.4, k3c = 2.2 ± 0.7.  相似文献   

9.
The kinetics of substrate conversions in the commercially important hydrosilylation of allyl chloride with trichlorosilane, catalyzed by active carbon‐supported platinum, as well as the yields of the main product (3‐chloropropyltrichlorosilane) and by‐products (tetrachlorosilane, propyltrichlorosilane) have been studied. On the basis of the measurements performed, the pseudo first‐order rate constants (kobs, k1 and k2 from the model of competitive reactions) and activation energy (Ea = 11 kcal mol?1 (46.2 kJ mol?1)) were determined. The data obtained point to a non‐linear dependence of kobs on the catalyst amount. From the kinetic relationships, the kinetic equation was deduced. All the results of kinetic, IR spectroscopic and thermogravimetric measurements, as well as the derived kinetic equation, have confirmed the general model of consecutive–competitive reaction involving the formation of a surface complex C1 which can decompose in two directions according to the Chalk–Harrod mechanism. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Conversion–time data were recorded for various ring‐closing metathesis (RCM) reactions that lead to five‐ or six‐membered cyclic olefins by using different precatalysts of the Hoveyda type. Slowly activated precatalysts were found to produce more RCM product than rapidly activated complexes, but this comes at the price of slower product formation. A kinetic model for the analysis of the conversion–time data was derived, which is based on the conversion of the precatalyst (Pcat) into the active species (Acat), with the rate constant kact, followed by two parallel reactions: 1) the catalytic reaction, which utilizes Acat to convert reactants into products, with the rate kcat, and 2) the conversion of Acat into the inactive species (Dcat), with the rate kdec. The calculations employ two experimental parameters: the concentration of the substrate (c(S)) at a given time and the rate of substrate conversion (?dc(S)/dt). This provides a direct measure of the concentration of Acat and enables the calculation of the pseudo‐first‐order rate constants kact, kcat, and kdec and of kS (for the RCM conversion of the respective substrate by Acat). Most of the RCM reactions studied with different precatalysts are characterized by fast kcat rates and by the kdec value being greater than the kact value, which leads to quasistationarity for Acat. The active species formed during the activation step was shown to be the same, regardless of the nature of different Pcats. The decomposition of Acat occurs along two parallel pathways, a unimolecular (or pseudo‐first‐order) reaction and a bimolecular reaction involving two ruthenium complexes. Electron‐deficient precatalysts display higher rates of catalyst deactivation than their electron‐rich relatives. Slowly initiating Pcats act as a reservoir, by generating small stationary concentrations of Acat. Based on this, it can be understood why the use of different precatalysts results in different substrate conversions in olefin metathesis reactions.  相似文献   

11.
A detailed chemical kinetic model has been developed to theoretically predict the pyrolysis behavior of phenol‐type monolignol compounds (1‐(4‐hydroxyphenyl)prop‐2‐en‐1‐one, HPP; p‐coumaryl alcohol, 3‐hydroxy‐1‐(4‐hydroxyphenyl)propan‐1‐one, HHPP; 1‐(4‐hydroxyphenyl)propane‐1,3‐diol, HPPD) released from the primary heterogeneous pyrolysis of lignin. The possible thermal decomposition pathways involving unimolecular decomposition, H‐addition, and H‐abstraction by H and CH3 radicals were investigated by comparing the activation energies calculated at the M06–2X/6–311++G(d,p) level of theory. The results indicated that all phenol‐type monolignol compounds convert to phenol by side‐chain cleavage. p‐Coumaryl alcohol decomposes into phenol via the formation of 4‐vinylphenol, whereas HPP, HHPP, and HPPD decompose into phenol via the formation of 4‐hydroxybenzaldehyde. The pyrolytic pathways focusing on the reactivity of the hydroxyl group in HPP and producing cyclopentadiene (cyc‐C5H6) were also investigated. The transition state theory (TST) rate constants for all the proposed elementary reaction channels were calculated at the high‐pressure limit in the temperature range of 300–1500 K. The kinetic analysis predicted the two favorable unimolecular decomposition pathways in HPP: the one is the dominant channel below 1000 K to produce cyc‐C5H6, and the other is above 1000 K to yield phenol (C6H5OH).  相似文献   

12.
The curing reaction of polyester fumarate with styrene was investigated with a differential scanning calorimeter (DSC) operated isothermally. The change in rate of cure was followed over the whole range of conversion. The rate of cure is accelerated by the gel effect to about ten to fifty times the rate of model copolymerization of diethyl fumarate with styrene. This autoacceleration is much enhanced for systems with higher crosslinking densities and at lower temperatures. The results confirm that both termination and propagation steps of the curing reaction are controlled by diffusion of polymeric segments and monomer molecules over almost the whole range of conversion. The final extent of conversion is short of completion for isothermal cure and even for postcure of polyester fumarate with styrene because of crosslink formation. The final conversion of isothermal cure decreases with increasing crosslinking density and shows a maximum with increasing reaction temperature. This temperature dependency of the final conversion is caused by the difference in the activation energies for two propagation rate constants kpf and kps, which were evaluated to be 7–10 and 5–8 kcal/mole, respectively, for the intermediate stage of the curing reaction.  相似文献   

13.
Crystalline thermosetting blends composed of 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP)‐cured epoxy resin (ER) and poly(?‐caprolactone) (PCL) were prepared via the in situ curing reaction of epoxy monomers in the presence of PCL, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol A (DGEBA), BAPP, and PCL. The miscibility of the blends after and before the curing reaction was established with differential scanning calorimetry and dynamic mechanical analysis. Single and composition‐dependent glass‐transition temperatures (Tg's) were observed in the entire blend composition after and before the crosslinking reaction. The experimental Tg's were in good agreement with the prediction by the Fox and Gordon–Taylor equations. The curing reaction caused a considerable increase in the overall crystallization rate and dramatically influenced the mechanism of nucleation and the growth of the PCL crystals. The equilibrium melting point depression was observed for the blends. An analysis of the kinetic data according to the Hoffman–Lauritzen crystallization kinetic theory showed that with an increasing amorphous content, the surface energy of the extremity surfaces increased dramatically for DGEBA/PCL blends but decreased for ER/PCL blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1085–1098, 2003  相似文献   

14.
The curing kinetics of a novel liquid crystalline epoxy resin with combining biphenyl and aromatic ester‐type mesogenic unit, diglycidyl ether of 4,4′‐bis(4‐hydroxybenzoyloxy)‐3,3′,5,5′‐tetramethyl biphenyl (DGE‐BHBTMBP), and the curing agent diaminodiphenylsulfone (DDS) was studied using the advanced isoconvensional method (AICM). DGE‐BHBTMBP/DDS curing system was investigated the curing behavior by means of differential scanning calorimetry (DSC) during isothermal and nonisothermal processes. Only one exothermal peak appeared in isothermal DSC curves. A variation of the effective activation energy with the extent of conversion was obtained by AICM. Three different curing stages were confirmed. In the initial curing stage, the value of Ea is dramatically decreased from ~90 to ~20 kJ/mol in the conversion region 0–0.2 for the formation of LC phase. In the middle stage, the value of Ea keeps about ~80 kJ/mol for cooperative effect of reaction mechanism and diffusion control. In the final stage, a significant increase of Ea from 84 to 136 kJ/mol could be caused by the mobility of longer polymer chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3922–3928, 2007  相似文献   

15.
Several phenol‐urea‐formaldehyde (PUF) cocondensed resol resins were synthesized by different procedures. The curing kinetics and network properties of these PUF resins were examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). A kinetic study indicated that the activation energy values of PUF resins are generally higher than those of phenol‐formaldehyde (PF) resins during curing processes, but the curing rates of PUF resins are faster than those of PF resins. The pH values of PUF systems have a significant influence on the rate constants, although they affect the activation energy very slightly. Moreover, the dependence of activation energy on the conversion showed that there are more individual reactions with different activation energies occurring during the curing processes in PUF resins than in PF resins. The decomposition of methylene ether bridges to form methylene bridges probably occurs at high temperature in PUF resins. DMTA data indicated that the network rigidity of PUF resins is slightly lower than that of PF resin. The gel point and Ttan δ2 transition measured by DMTA were consistent with the kinetic results obtained from the DSC data, but they were also related to the physical and mechanical properties of the network, especially with regard to the Ttan δ2 transition. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1929–1938, 2003  相似文献   

16.
The free‐radical copolymerization of m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) and styrene was studied with 1H NMR kinetic experiments at 70 °C. Monomer conversion vs time data were used to determine the ratio kp × kt?0.5 for various comonomer mixture compositions (where kp is the propagation rate coefficient and kt is the termination rate coefficient). The ratio kp × kt?0.5 varied from 25.9 × 10?3 L0.5 mol?0.5 s?0.5 for pure styrene to 2.03 × 10?3 L0.5 mol?0.5 s?0.5 for 73 mol % TMI, indicating a significant decrease in the rate of polymerization with increasing TMI content in the reaction mixture. Traces of the individual monomer conversion versus time were used to map out the comonomer mixture composition drift up to overall monomer conversions of 35%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed was observed. This depletion became more pronounced at higher levels of TMI in the initial comonomer mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1064–1074, 2002  相似文献   

17.
Styrene radical polymerizations mediated by the imidazolidinone nitroxides 2,5‐bis(spirocyclohexyl)‐3‐methylimidazolidin‐4‐one‐1‐oxyl (NO88Me) and 2,5‐bis(spirocyclohexyl)‐3‐benzylimidazolidin‐4‐one‐1‐oxyl (NO88Bn) were investigated. Polymeric alkoxyamine (PS‐NO88Bn)‐initiated systems exhibited controlled/living characteristics at 100–120 °C but not at 80 °C. All systems exhibited rates of polymerization similar to those of thermal polymerization, with the exception of the PS‐NO88Bn system at 80 °C, which polymerized twice as quickly. The dissociation rate constants (kd) for the PS‐NO88Me and PS‐NO88Bn coupling products were determined by electron spin resonance at 50–100 °C. The equilibrium constants were estimated to be 9.01 × 10?11 and 6.47 × 10?11 mol L?1 at 120 °C for NO88Me and NO88Bn, respectively, resulting in the combination rate constants (kc) 2.77 × 106 (NO88Me) and 2.07 × 106 L mol?1 s?1 (NO88Bn). The similar polymerization results and kinetic parameters for NO88Me and NO88Bn indicated the absence of any 3‐N‐transannular effect by the benzyl substituent relative to the methyl substituent. The values of kd and kc were 4–8 and 25–33 times lower, respectively, than the reported values for PS‐TEMPO at 120 °C, indicating that the 2,5‐spirodicyclohexyl rings have a more profound effect on the combination reaction rather than the dissociation reaction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 327–334, 2003  相似文献   

18.
The kinetic and mechanistic study of Ag(I)‐catalyzed chlorination of linezolid (LNZ) by free available chlorine (FAC) was investigated at environmentally relevant pH 4.0–9.0. Apparent second‐order rate constants decreased with an increase in pH of the reaction mixture. The apparent second‐order rate constant for uncatalyzed reaction, e.g., kapp = 8.15 dm3 mol−1 s−1 at pH 4.0 and kapp. = 0.076 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C and for Ag(I) catalyzed reaction total apparent second‐order rate constant, e.g., kapp = 51.50 dm3 mol−1 s−1 at pH 4.0 and kapp. = 1.03 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C. The Ag(I) catalyst accelerates the reaction of LNZ with FAC by 10‐fold. A mechanism involving electrophilic halogenation has been proposed based on the kinetic data and LC/ESI/MS spectra. The influence of temperature on the rate of reaction was studied; the rate constants were found to increase with an increase in temperature. The thermodynamic activation parameters Ea, ΔH#, ΔS#, and ΔG# were evaluated for the reaction and discussed. The influence of catalyst, initially added product, dielectric constant, and ionic strength on the rate of reaction was also investigated. The monochlorinated substituted product along with degraded one was formed by the reaction of LNZ with FAC.  相似文献   

19.
《中国化学》2018,36(1):11-14
A visible light accelerated C–H functionalization reaction in palladium‐catalyzed arylation of vinyl arenes with diaryliodonium salts is reported in the absence of additional photosensitizer. The kinetic isotope effect (kH/kD) was changed from 3.6 (under darkness) to 1.1 when irradiated by visible light, which indicated that the C–H functionalization step was the rate determining step under darkness and significantly accelerated by the irradiation of visible light. Finally the synthesis of ortho tetra‐substituted vinylarene atropisomers with high enantiospecificity was realized via this protocol.  相似文献   

20.
The kinetics of the aqueous reaction of Cr(III) with either l ‐glutamic acid or sodium hydrogen l ‐glutamate at pH 2.46‐5.87 have been followed by means of absorbance readings. The rate of formation of the reaction products showed acceleration‐deceleration periods, caused by the accumulation and posterior decay of an intermediate in nonnegligible concentration. A double‐exponential integrated rate law allowed obtaining two rate constants for each absorbance‐time experimental series, associated with the appearance (k1) and decay (k2) of the long‐lived intermediate. An increase of the initial concentrations of either hydrogen l ‐glutamate (apparent kinetic orders < 1) or hydroxide (kinetic orders = 1) ions resulted in an increase of both k1 and k2, but addition of an inert electrolyte (KNO3) resulted in opposite effects on k1 (decrease) and k2 (increase). The experimental activation energies were 83 ± 10 (for k1) and 95 ± 5 (for k2) kJ mol−1. The electronic spectrum of the low reactivity detected intermediate resembled more closely to that of the blue/green reactant than that of the violet reaction product. The low number of protons set free by the complexating hydrogen l ‐glutamate ligand seems to suggest that some polymerization of the coordinated amino acid (to form a di‐ or tripeptide) might take place. The available experimental data indicate that the coordination of the organic ligand must be preceded by the breakdown of a strong Cr(III)–H2O chemical bond in the slow steps of the mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号