首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
Composite layers made in sapphire by implantation of 40-keV Cu+ ions at a dose of 1 × 1017 cm−2 and an ion beam current density varying from 2.5 to 10 μA/cm2 are studied. It is shown that ion implantation makes it possible to synthesize a composite layer containing copper nanoparticles at the surface of the insulator. However, the nanoparticle size distribution in this layer is nonuniform. The composite layer is exposed to high-power excimer laser radiation with the aim of modifying the size and size distribution of the metal nanoparticles in it. The resulting structures are examined by Rutherford backscattering, optical reflection spectroscopy, and atomic force microscopy. It is found that the laser irradiation diminishes copper nanoparticles in the composite layer. Experimental data on laser modification may be explained by photofragmentation and/or melting of the nanoparticles in the sapphire matrix under the action of nanosecond laser pulses.  相似文献   

2.
Sodium calcium silicate glasses with Ag+ implanted ions are studied. The ion implantation conditions are as follows: the energy is 60 keV, the dose is 7×1016 cm−2, and the ion current density is 10 μA/cm2. Ion implantation provides the formation of a composite layer that incorporates silver nanoparticles in the surface region of glass. The size distribution of nanoparticles over the depth in the composite layer is strongly nonuniform. The effect of a high-power pulsed excimer laser on the composite layer is investigated. It is found that, under laser irradiation, the size of silver nanoparticles in the implanted layer decreases but the size distribution of nanoparticles over the depth remains nonuniform, even though it becomes slightly narrower compared to that observed prior to irradiation. The experimental results are interpreted in terms of the effects of the melting of glass and metallic particles on a nanosecond scale. __________ Translated from Fizika Tverdogo Tela, Vol. 43, No. 11, 2001, pp. 2100–2106. Original Russian Text Copyright ? 2001 by Stepanov, Popok, Hole, Bukharaev.  相似文献   

3.
Diamond-like carbon films containing Ag and Cu in nanocrystalline form were deposited onto SnO2-coated glass substrates by electrochemical technique. Relative amount of silver and copper to be incorporated in the DLC matrix was tailored by varying the amount of silver and copper containing salts in the electrolyte. Current density was adjusted to obtain films with different crystallite size while the volume fraction of the metal nanocrystallites was altered by varying the dilution of the solution containing the salts. Raman studies indicated the presence of two peaks located at ∼1350 cm−1 (D-line) and 1566 cm−1 (G-line) for all the films and the relative intensities of these peaks changed with the amount of metal incorporation in it. The FTIR spectra were seen to be dominated by a peak at 975 cm−1 for C-H out of plane deformation modes along with peaks for C-H bending, C-H stretching and C-C stretching modes at 858, 1113 and 1189 cm−1, respectively. The optical absorption spectra showed a single plasmon band instead of two characteristic bands for Ag and Cu. We ascribe this to nanophase limited interfacial alloying at the Ag-Cu interface. The experimental observation was analyzed in the light of Mie theory.  相似文献   

4.
The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas.The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α′) and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH)2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air.  相似文献   

5.
High purity alumina ceramics (99% Al2O3) was implanted by copper ion and titanium ion in a metal vapour vacuum arc (MEVVA) implanter, respectively. The influence of implantation parameters was studied varying ion fluence. The samples were implanted by 68 keV Cu ion and 82 keV Ti ion with fluences from 1 × 1015 to 1 × 1018 ions/cm2, respectively. The as-implanted samples were investigated by scanning electron microscopy (SEM), glancing X-ray diffraction (GXRD), scanning Auger microscopy (SAM), and four-probe method. Different morphologies were observed on the surfaces of the as-implanted samples and clearly related to implantation parameters. For both ion implantations, the sheet resistances of the alumina samples implanted with Cu and Ti ion fluences of 1 × 1018 ions/cm2, respectively, reached the corresponding minimum values because of the surface metallization. The experimental results indicate that the high-fluence ion implantation resulted in conductive layer on the surface of the as-implanted high purity alumina ceramics.  相似文献   

6.
Composite layers formed in SiO2 by implantation of 50keV Cu+ ions with a dose of 8·1016 cm–2 at an ion current density of 10 A/cm2 have been investigated. It is shown that ion implantation carried out under the chosen conditions allows one to synthesize copper nanoparticles in the surface region of a dielectric. The exposure of composites to highpower pulses of an excimer krypton laser at a wavelength in the SiO2 transmission region has been investigated. In the absence of effective optical absorption by a glass substrate, the dynamics of the change in the structure of the layer with metallic nanoparticles is determined by the number of laser pulses. It has been established that at the initial stage of pulsed irradiation fragmentation of the largest nanoparticles occurs followed by the inverse process of their agglomeration as a result of slight heating of the glass matrix; further exposure to the laser irradiation leads to an effective accumulation of energy in the particles and, as a consequence, to their melting and dissociation into small clusters and individual atoms.  相似文献   

7.
In order to study the ultrafast relaxation dynamics of surface plasmon excitation in metal nanoparticles in the presence of inhomogeneous line broadening and investigate the influence of the reduced dimensions on the dephasing time T2 in the size regime below about 10 nm, we have recently demonstrated a novel technique based on persistent spectral hole burning [1]. Here, we describe a theoretical model that has been developed for evaluation of the experimental data and precise determination of T2 for particles of different size and shape. Comparison of the model to experimental data for Ag nanoparticles on sapphire shows that the theoretical treatment does not only reproduce the shape of the generated holes but also the dependence of their widths on the applied laser fluence. As a result, we have a reliable and versatile tool at hand making possible systematic studies of the ultrafast electron dynamics in small metal particles, and the dependence of the femtosecond dephasing time on their size, shape and surrounding dielectric. Received: 12 September 2001 / Published online: 15 October 2001  相似文献   

8.
Microcrystalline cellulose is a porous natural material which can be used both as a support for nanoparticles and as a reducer of metal ions. Cellulose supported nanoparticles can act as catalysts in many reactions. Cu, CuO, and Cu2O particles were prepared in microcrystalline cellulose by adding a solution of copper salt to the insoluble cellulose matrix and by reducing the copper ions with several reducers. The porous nanocomposites were studied using anomalous small angle X-ray scattering (ASAXS), X-ray absorption spectroscopy, and X-ray diffraction. Reduction of Cu2+ with cellulose in ammonium hydrate medium yielded crystalline CuO nanoparticles and the crystallite size was about 6–20 nm irrespective of the copper concentration. The size distribution of the CuO particles was determined with ASAXS measurements and coincided with the crystallite sizes. Using sodium borohydrate or hydrazine sulfate as a reducer both metallic Cu and Cu2O nanoparticles were obtained and the crystallite size and the oxidation state depended on the amount of reducer.  相似文献   

9.
A complete optical characterization in the visible region of thin copper oxide films has been performed by ellipsometry. Copper oxide films of various thicknesses were grown on thick copper films by low temperature thermal oxidation at 125 °C in air for different time intervals. The thickness and optical constants of the copper oxide films were determined in the visible region by ellipsometric measurements. It was found that a linear time law is valid for the oxide growth in air at 125 °C. The spectral behaviour of the optical constants and the value of the band gap in the oxide films determined by ellipsometry in this study are in agreement with the behaviour of those of Cu2O, which have been obtained elsewhere through reflectance and transmittance methods. The band gap of copper oxide, determined from the spectral behaviour of the absorption coefficient was about 2 eV, which is the generally accepted value for Cu2O. It was therefore concluded that the oxide composition of the surface film grown on copper is in the form of Cu2O (cuprous oxide). It was also shown that the reflectance spectra of the copper oxide–copper structures exhibit behaviour expected from a single layer antireflection coating of Cu2O on Cu. Received: 19 July 2001 / Accepted: 27 July 2001 / Published online: 17 October 2001  相似文献   

10.
Surface ablation of cobalt-cemented tungsten carbide hard metal has been carried out in this work using a 308 nm, 20 ns XeCl excimer laser. Surface microphotography and XRD, as well as an electron probe have been used to investigate the transformation of phase and microstructure as a function of the pulse-number of laser shots at a laser fluence of 2.5 J/cm2. The experimental results show that the microstructure of cemented tungsten carbide is transformed from the original polygonal grains of size 3 μm to interlaced large, long grains with an increase in the number of laser shots up to 300, and finally to gross grains of size 10 μm with clear grain boundaries after 700 shots of laser irradiation. The crystalline structure of the irradiated area is partly transformed from the original WC to βWC1-x, then to αW2C and CW3, and finally to W crystal. It is suggested that the undulating ‘hill–valley’ morphology may be the result of selective removal of cobalt binder from the surface layer of the hard metal. The formation of non-stoichiometric tungsten carbide may result from the escape of elemental carbon due to accumulated heating of the surface by pulsed laser irradiation. Received: 13 July 2000 / Accepted: 27 October 2000 / Published online: 10 January 2001  相似文献   

11.
We investigate the molecular structure change of laser-irradiated perfluoropolyether lubricant on disk media by using mass spectroscopy. A KrF excimer laser with a wavelength of 248 nm was used to irradiate the lubricant film (2 nm) on a carbon overcoat surface. We found that two unique mass peaks emerged from the laser-irradiated lubricant mass spectra, which are attributed to OH-CHF-O(:H+)-CHF-OH and F-COO-CF2-CF2-CF2-CF2 + respectively. When thelaser fluence increases to 100 mJ/cm2, these two unique mass peaks start to be enhanced drastically while the abundance of the end group of the lubricant, CF2CH2OH, remains almost constant, indicating that the two unique species are generated from the scission and re-arrangement of the backbone ether chains. With a laser fluence beyond 140 mJ/cm2, the disk media surface damage is observable and lubricant evaporation is the main pathway. Received: 24 October 2001 / Accepted: 3 December 2001 / Published online: 3 May 2002  相似文献   

12.
The formation of copper/gold solid solutions due to ion beam mixing was studied by Rutherford backscattering, high-voltage electron microscopy and transmission high-energy electron diffraction. Irradiation of multilayered Cu/Au thin films were performed with Xe+ ions or Ar+ ions at room temperature to doses ranging from 5×1015 to 2.5×1016 ions/cm2 and energies from 100 to 300 keV. The ion beam mixing leads to uniformly mixed metal layers. The grain size of mixed layers is pronounced increase. It was found that Cu/Au solid solutions are formed with different composition in dependence on itinial composition and implantation dose. Cu-rich and Au-rich solid solutions are induced by ion beam mixing at an initial composition Cu x Au100–x withx70. In addition to these solid solutions, a solid solution of middle composition Cu60...40Au40...60 is formed for an initial composition withx<70. The kinetics of formation of solid solution is discussed as a function of the initial composition and implantation dose. Post-annealing experiments of mixed Cu50Au50 multilayers lead to lattice transformations and provide a superlattice structure CuAuI of the L10-type. With this process of ordering is associated the formation of dislocation loops.  相似文献   

13.
The evolution of nanoparticles in sequentially ion-implanted Ag and Ag/Cu into silica glasses has been studied. The doses for implantation (×1016 ions/cm2) were 5Ag, 5Ag/5Cu and 5Ag/15Cu. Ag nanoclusters have been formed in the implanted 5Ag specimen. In the implanted 5Ag/5Cu specimen, some formed nanoclusters have brighter center features. With an increase of Cu ions dose, the nanoclusters with brighter center features become prevalent. The microstructural properties of the nanoparticles are characterized by transmission electron microscopy. Scanning transmission electron microscope high-angle annular dark field and high-resolution transmission electron microscopy are also utilized to study the formed nanoparticles. The results show that nanovoids have been induced into metal nanoparticles during the ion implanting process, not the core-shell nanoparticles as other workers believed. The nanovoids can be the aggregation of vacancies induced by irradiation.  相似文献   

14.
Nanocomposite thin films formed by Cu nanocrystals (NCs) embedded in an amorphous aluminium oxide (Al2O3) host have been prepared by alternate pulsed laser deposition. Spectroscopic ellipsometry is used to determine the effective refractive index (n=n+ik). The extinction coefficient is non-negligible and shows a broad absorption band related to the surface plasmon resonance. In the neighbourhood of this wavelength, the real part of the refractive index undergoes an anomalous dispersion, leading to a significant increase of the n value of the composite compared to that of the host. When the Cu content is low enough, about 2 at. %, the use of an effective medium approach combined with a regression method allows us to determine the metal content and film thickness from the ellipsometric measurements. For larger concentrations this approach is no longer valid. Received: 31 July 2001 / Revised version: 21 September 2001 / Published online: 15 October 2001  相似文献   

15.
This paper presents experimental evidence that using the KrF excimer laser for quantitative laser-induced fluorescence (LIF) studies of the OH A-X (3,0) system is highly problematic if the effects of both photobleaching and photochemistry are not included for laser spectral irradiances greater than 20 MW/cm2 cm-1. Pump-probe and time-resolved measurements of the OH LIF signal in an atmospheric pressure, premixed CH4-air flame at low- and high-laser-spectral-irradiance conditions show that a significant amount of OH is produced from photofragments resulting from the simultaneous 2-photon predissociation of H2O molecules in the C-X system. A 5+2-level rate-equation model that includes the effects of both photobleaching and photochemical OH production is shown to satisfactorily predict the data using a single adjustable parameter given by the effective, spectrally integrated 2-photon cross-section of H2O near 248 nm. The time-integrated OH LIF signal was found to depend on both the laser spectral irradiance and the local concentration of H2O. Additionally, use of the KrF excimer laser for 2-line rotational thermometry can produce temperature errors as great as +550 K at high laser-pulse energies. Received: 21 August 2000 / Revised version: 30 October 2000 / Published online: 21 February 2001  相似文献   

16.
2 to 2.5 mJ/cm2 when a 0.5 ps pulse is used instead of a 15 ns laser pulse. Measurements on liquid indium show a different behavior. With 15 ns laser pulses the threshold fluence is lowered by a factor of ∼3 from 100 mJ/cm2 for solid indium to 30 mJ/cm2 for liquid indium. In contrast, measurements with 0.5 ps laser pulses do not show any change in the ablation threshold and are independent of the phase of the metal at 2.5 mJ/cm2. This behavior could be explained by thermal diffusion and heat conduction during the laser pulse and demonstrates in an independent way the energy lost into the material when long laser pulses are applied. Time-of-flight measurements to investigate the underlying ablation mechanism show thermal behavior of the ablated indium atoms for both ps and ns ablation and can be fitted to Maxwell-Boltzmann distributions. Received: 2 December 1996/Accepted: 11 December 1996  相似文献   

17.
We are investigating the thermodynamic conditions under which condensation occurs in laser ablated copper plasma plumes. The plasma is created by XeCl excimer laser ablation (308 nm, 300 mJ/pulse) at power densities from 500–1000 MW/cm2 into backing pressures of helium in the range 0–50 torr. We use laser-induced fluorescence (LIF) to probe velocity and relative density of both atomic copper and the copper dimer molecule, Cu2, which is formed during condensation onset. At low pressure (10 mtorr), the atomic Cu velocity peaks at approximately 2×106 cm/s. Copper dimer time-of-flight data suggest that condensation onset occurs after the Cu atoms have slowed very significantly. Excitation scans of the Cu2A-X (0,0) and (1,1) bands yield a rotational and vibrational temperature in the neighborhood of 300 K for all conditions studied. Such low temperatures support the theory that Cu2 is formed under thermally and translationally cold conditions. Direct laser beam absorption is used to determine the number density of atomic copper. Typical densities attained with 5 torr of helium backing gas are 6–8×1013 cm–3. Rayleigh scattering from particulate is easily observable under conditions favorable to particulate production.  相似文献   

18.
Nd,Cr:Gd3Sc2Ga3O12 (GSGG) thin films have been produced for the first time. They were grown on Si(001) substrates at 650 °C by pulsed laser ablation at 248 nm of a crystalline Nd,Cr:GSGG target rod. The laser plume was analyzed using time-of-flight quadrupole mass spectroscopy, and consisted of elemental and metal oxide fragments with kinetic energies typically in the range 10 to 40 eV, though extending up to 100 eV. Although films deposited in vacuum using laser fluences of 0.8±0.1 J cm−2 reproduced the Nd,Cr:GSGG bulk stoichiometry, those deposited using fluences above ≈3 J cm−2 resulted in noncongruent material transfer and were deficient in Ga and Cr. Attempts to grow films using synchronized oxygen or oxygen/argon pulses yielded mixed oxide phases. Under optimal growth conditions, the films were heteroepitaxial, with GSGG(001)[100]∥Si(001)[100], and exhibited Volmer–Weber-type growth. Room-temperature emission spectra of the films suggest efficient non-radiative energy transfer between Cr3+ and Nd3+ ions, similar to that of the bulk crystal. Received: 1 October 1999 / Accepted: 15 October 1999 / Published online: 23 February 2000  相似文献   

19.
Nanosized luminescent (Y,Bi)VO4:Eu3+ and Y(V,P)O4:Eu3+ were synthesized at low temperatures either by a coprecipitation method or by a hydrothermal method from aqueous solutions. The effect of Bi3+ ion or P5+ ion content in the lattice, annealing temperature effects on the crystal structure and the particle size, and the luminescence property of (Y,Bi)VO4:Eu3+ and Y(V,P)O4:Eu3+ nanoparticles were examined with a field-enhanced scanning electron microscopy, XRD, and a spectrofluorometer. The pristine YVO4:Eu3+, (Y,Bi)VO4:Eu3+, or Y(V,P)O4:Eu3+ nanoparticles are 35-50 nm in size. The luminescence spectrum of the Eu3+ ion was used to probe its position in the crystal lattice. The dopant ions enter the same lattice sites in the nanocrystalline as in the corresponding bulk material, resulting similar spectral features between them. Photoluminescence intensity is weak for the pristine nanoparticles. Annealing the nanoparticles at temperatures up to 1000 °C results in the increased luminescence intensity (>80% of micrometer-sized phosphors) with the minimal particle growth and the improved particle crystallinity.  相似文献   

20.
CuInS2 thin films were prepared by a two-stage ion layer gas reaction (ILGAR) process in which the Cu and In precursors were deposited on glass substrate by using a simple and low-cost dip coating technique and annealed in H2S atmosphere at different temperatures. The influence of the annealing temperature (250-450 °C) on the particle size, crystal structure and optical properties of the CuInS2 thin films was studied. Transmission electron microscopy revealed that the particle radii varied in the range 6-21 nm with annealing. XRD and SAED patterns indicated polycrystalline nature of the nanoparticles. The optical band gap (Eg) varied from 1.48 to 1.56 eV with variation of particle size. The variation of Urbach tail with temperature indicated higher density of the defects for the films annealed at lower temperature. From the Raman study, it was observed that the FWHM of the A1 mode at ∼292 cm−1 corresponding to the chalcopyrite phase of CuInS2 decreased with increasing annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号