首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
将径向基函数应用到一类轴对称Poisson方程的数值求解中,提出了一种Trefftz有限元计算格式.非0右端项将问题的特解引入Trefftz单元域内场,致使单元刚度方程涉及区域积分.利用径向基函数对特解近似处理,可消除区域积分,从而保持Trefftz有限元法只含边界积分的优势.为获得特解,选取求解域内所有单元的节点和形心作为基本插值点,而在求解域之外构造一个虚拟边界,在其上布置一定数目的虚拟点作为额外插值点.数值算例验证了该方法的有效性和可行性.  相似文献   

2.
三维瞬态弹性动力场的基本解及边界积分方程   总被引:1,自引:0,他引:1  
三维瞬态动力场的求解,一直为世人所瞩目,本文拟采用边界积分方程——边界单元法进行求解。与其它数值方法相比较,本方法由于采用了动力场区域的基本解,因此在处理无限域或半无限域的动力场问题时可以毋须人为地去划定边界,附加相应的边界约束条件。同时在求解过程中,采用了权函数与奇异格林函数,使得域积分可以转化为边界积  相似文献   

3.
分析了二维问题边界元法3节点二次单元的几何特征,区分和定义了源点相对高阶单元的Ⅰ型和Ⅱ型接近度.针对二维位势问题高阶边界元中奇异积分核,构造出具有相同Ⅱ型几乎奇异性的近似核函数,在几乎奇异积分单元上分离出积分核中主导的奇异函数部分.原积分核扣除其近似核函数后消除几乎奇异性,成为正则积分核函数,并采用常规Gauss数值方法计算该正则积分;对奇异核函数的积分推导出解析公式,从而建立了一种新的边界元法高阶单元几乎奇异积分半解析算法.应用该算法计算了二维薄体结构温度场算例,计算结果表明高阶单元半解析算法能充分发挥边界元法优势,显著提高计算精度.  相似文献   

4.
王珏  亓艳 《计算数学》2024,(1):47-78
本文针对二维空间中海面下方多障碍体散射问题,分别从理论分析和数值计算两方面进行研究.通过分析散射问题的特性,利用Helmholtz方程,结合不同边界条件以及无穷远处辐射条件,建立了海面下方多障碍体散射问题的数学模型,并证明了散射问题解的唯一性.基于位势理论,利用间接积分方程方法,得到了不同区域的场所满足的积分表示,以及边界上密度函数所满足的边界积分方程.通过引入位势算子,将积分区域进行截断,得到有界域上的算子方程.针对所建立的边界积分方程系统,利用Nystr?m方法构造数值格式,并证明了数值解的收敛性.最后,利用数值实验验证理论的正确性和有效性.进一步,通过设计数值实验分析不同参数对散射问题的影响.  相似文献   

5.
平面定常Stokes问题的无奇异第一类边界积分方程   总被引:3,自引:0,他引:3  
对无奇异边界积分方程归化法的研究,已有的结果都是针对直接变量的,其核心思想是利用刚体位移(包括刚体的转动和平移)或均匀场.然而,对第一类边界积分方程的无奇异边界归化法的研究,至今还未涉足.本文提交一种新方法,归化出平面定常Stokes问题的第一类无奇异边界积分方程,并建立完整的数值求解体系.一个简单的算例表明本文方法可获得理想的数值结果,特别是边界量的数值结果。  相似文献   

6.
针对二维Helmholtz方程的内外边值问题,提出了插值型边界无单元法(interpolating boundary element-free method).在间接位势理论的基础上,利用Laplace方程基本解的特性,建立了求解Helmholtz方程Neumann边值内外问题的正则化形式,有效消除了强奇异积分的计算.其次通过引入全局距离展开成局部距离的幂级数,详细推导了距离函数的导数和法向导数差值的极限表达式.最后给出了4个插值型边界无单元法的数值算例,表明了该方法可取得较高的可行性和有效性.  相似文献   

7.
孙瑶  陈博 《计算数学》2018,40(3):254-270
 本文处理二维和三维Helmholtz方程的边界数据复原问题.通过利用位势理论近似问题的解,导出了解决Cauchy问题的一种非迭代积分方程方法.为了处理形成问题的不适定性,采用了Tikhonov正则化结合Morozov偏差原理的方法,并且给出了算法的收敛性和误差估计,最后给出了二维和三维的数值算例.通过数值算例我们检验了源点和边界之间距离的关系,算法关于噪声、源点数目的数值收敛性,稳定性.  相似文献   

8.
关于薄板的无网格局部边界积分方程方法中的友解   总被引:3,自引:1,他引:2  
无网格局部边界积分方程方法是最近发展起来的一种新的数值方法,这种方法综合了伽辽金有限元、边界元和无单元伽辽金法的优点,是一种具有广阔应用前景的、真正的无网格方法.把无网格局部边界积分方程方法应用于求解薄板问题,给出了薄板无网格局部边界积分方程方法所需要的友解及其全部公式.  相似文献   

9.
阻尼边界条件散射问题的数值解法   总被引:1,自引:0,他引:1       下载免费PDF全文
该文研究了光滑区域上二维Helmholtz方程阻尼边界条件外问题的数值解法, 应用单双层位势组合来逼近散射场, 因此积分方程中含有超奇异算子. 给出了超奇异算子的离散化方法, 在Holder空间中给出了误差估计和解析边界的收敛性分析. 最后针对该方法给出数值实例, 以表明该方法的有效性.  相似文献   

10.
横观各向同性电磁弹性介质中裂纹对SH波的散射   总被引:2,自引:0,他引:2  
研究横观各向同性电磁弹性介质中裂纹和反平面剪切波之间的相互作用.根据电磁弹性介质的平衡运动微分方程、电位移和磁感应强度微分方程,得到SH波传播的控制场方程.引入线性变换,将控制场方程简化为Helmholtz方程和两个Laplace方程A·D2通过Fourier变换,并采用非电磁渗透型裂面边界条件,得到了柯西奇异积分方程组.利用Chebyshev多项式求解积分方程,得到应力场、电场和磁场以及动应力强度因子的表达,并给出了数值算例.  相似文献   

11.
The numerical solution of acoustic wave propagation problems in planar domains with corners and cracks is considered. Since the exact solution of such problems is singular in the neighborhood of the geometric singularities the standard meshfree methods, based on global interpolation by analytic functions, show low accuracy. In order to circumvent this issue, a meshfree modification of the method of fundamental solutions is developed, where the approximation basis is enriched by an extra span of corner adapted non-smooth shape functions. The high accuracy of the new method is illustrated by solving several boundary value problems for the Helmholtz equation, modelling physical phenomena from the fields of room acoustics and acoustic resonance.  相似文献   

12.
In this paper, the exact forms of integrals in the meshless local boundary integral equation method are derived and implemented for elastostatic problems. A weak form for a set of governing equations with a unit test function or polynomial test functions is transformed into local integral equations. Each node has its own support domain and is surrounded by a local integral domain with different shapes of boundaries. The meshless approximation based on the radial basis function (RBF) is employed for the implementation of displacements. A completed set of closed forms of the local boundary integrals are obtained. As there are no numerical integrations to be carried out the computational time is significantly reduced. Three examples are presented to demonstrate the application of this approach in solid mechanics.  相似文献   

13.
We investigate a meshless method for the accurate and non-oscillatory solution of problems associated with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The governing equation and boundary conditions are approximated by the method of fundamental solutions (MFS). It is well known that the existence of boundary singularities affects adversely the accuracy and convergence of standard numerical methods. The solutions to such problems and/or their corresponding derivatives may have unbounded values in the vicinity of the singularity. This difficulty is overcome by subtracting from the original MFS solution the corresponding singular functions, without an appreciable increase in the computational effort and at the same time keeping the same MFS approximation. Four examples for both the Helmholtz and the modified Helmholtz equations are carefully investigated and the numerical results presented show an excellent performance of the approach developed.  相似文献   

14.
We consider the approximation of some highly oscillatory weakly singular surface integrals, arising from boundary integral methods with smooth global basis functions for solving problems of high frequency acoustic scattering by three-dimensional convex obstacles, described globally in spherical coordinates. As the frequency of the incident wave increases, the performance of standard quadrature schemes deteriorates. Naive application of asymptotic schemes also fails due to the weak singularity. We propose here a new scheme based on a combination of an asymptotic approach and exact treatment of singularities in an appropriate coordinate system. For the case of a spherical scatterer we demonstrate via error analysis and numerical results that, provided the observation point is sufficiently far from the shadow boundary, a high level of accuracy can be achieved with a minimal computational cost.  相似文献   

15.
The numerical resolution of the boundary integral equations applied to the differential equations of Laplace, Helmholtz and Maxwell requires the handling of quasi-singular integrals with different order of singularity. The numerical approximation of the integral equations of different kinds is made by boundary finite elements. In this paper, we present a complete survey for estimating quadrature errors for the numerical techniques proposed by Huang and Cruse [Q. Huang, T.A. Cruse, Some notes on singular integral techniques in boundary element analysis, Int. J. Numer. Methods Eng. 36 (15) (1993) 2643-2659], to calculate the quasi-singular integrals. To validate the accuracy and efficiency of these techniques and approve our study some numerical examples are presented and discussed.  相似文献   

16.
This paper presents a fourth-order kernel-free boundary integral method for the time-dependent, incompressible Stokes and Navier-Stokes equations defined on irregular bounded domains. By the stream function-vorticity formulation, the incompressible flow equations are interpreted as vorticity evolution equations. Time discretization methods for the evolution equations lead to a modified Helmholtz equation for the vorticity, or alternatively, a modified biharmonic equation for the stream function with two clamped boundary conditions. The resulting fourth-order elliptic boundary value problem is solved by a fourth-order kernel-free boundary integral method, with which integrals in the reformulated boundary integral equation are evaluated by solving corresponding equivalent interface problems, regardless of the exact expression of the involved Green's function. To solve the unsteady Stokes equations, a four-stage composite backward differential formula of the same order accuracy is employed for time integration. For the Navier-Stokes equations, a three-stage third-order semi-implicit Runge-Kutta method is utilized to guarantee the global numerical solution has at least third-order convergence rate. Numerical results for the unsteady Stokes equations and the Navier-Stokes equations are presented to validate efficiency and accuracy of the proposed method.  相似文献   

17.
There has been considerable attention given in recent years to the problem of extending finite and boundary element-based analysis of Helmholtz problems to higher frequencies. One approach is the Partition of Unity Method, which has been applied successfully to boundary integral solutions of Helmholtz problems, providing significant accuracy benefits while simultaneously reducing the required number of degrees of freedom for a given accuracy. These benefits accrue at the cost of the requirement to perform some numerically intensive calculations in order to evaluate boundary integrals of highly oscillatory functions. In this paper we adapt the numerical steepest descent method to evaluate these integrals for two-dimensional problems. The approach is successful in reducing the computational effort for most integrals encountered. The paper includes some numerical features that are important for successful practical implementation of the algorithm.  相似文献   

18.
Numerical Solution for the Helmholtz Equation with Mixed Boundary Condition   总被引:1,自引:0,他引:1  
We consider the numerical solution for the Helmholtz equation in R~2 with mixed boundary conditions.The solvability of this mixed boundary value problem is estab- lished by the boundary integral equation method.Based on the Green formula,we express the solution in terms of the boundary data.The key to the numerical real- ization of this method is the computation of weakly singular integrals.Numerical performances show the validity and feasibility of our method.The numerical schemes proposed in this paper have been applied in the realization of probe method for inverse scattering problems.  相似文献   

19.
We consider Cauchy singular and Hypersingular boundary integral equations associated with 3D potential problems defined on polygonal domains, whose solutions are approximated with a Galerkin boundary element method, related to a given triangulation of the boundary. In particular, for constant and linear shape functions, the most frequently used basis functions, we give explicit results of the analytical inner integrations and suggest suitable quadrature schemes to evaluate the outer integrals required to form the Galerkin matrix elements. These numerical indications are given after an analysis of the singularities arising in the whole integration process, which is valid also for shape functions of higher degrees.  相似文献   

20.
In some earlier publications it has been shown that the solutions of the boundary integral equations for some mixed boundary value problems for the Helmholtz equation permit integral representations in terms of solutions of associated complicated singular algebraic ordinary differential equations. The solutions of these differential equations, however, are required to be known on some infinite interval on the real line, which is unsatisfactory from a practical point of view. In this paper, for the example of one specific boundary integral equation, the relevant solutions of the associated differential equation are expressed by integrals which contain only one unknown generalized function, the support of this generalized function is no longer unbounded but a compact subset of the real line. This generalized function is a distributional solution of the homogeneous boundary integral equation. By this null space distribution the boundary integral equation can be solved for arbitrary right-hand sides, this solution method can be considered of being analogous to the method of variation of parameters in the theory of ordinary differential equations. The nature of the singularities of the null space distribution is worked out and it is shown that the null space distribution itself can be expressed by solutions of the associated ordinary differential equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号