首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics simulations are performed to investigate the influence of irradiation damage on the mechanical properties of copper. In the simulation, the energy of primary knocked-on atoms (PKAs) ranges from 1 to 10 keV, and the results indicate that the number of point defects (vacancies and interstitials) increases linearly with the PKA energy. We choose three kinds of simulation samples: un-irradiated and irradiated samples, and comparison samples. The un-irradiated samples are defect-free, while irradiation induces vacancies and interstitials in the irradiated samples. It is found that due to the presence of the irradiation-induced defects, the compressive Young modulus of the single-crystal Cu increases, while the tensile Young modulus decreases, and that both the tensile and compressive yield stresses experience a dramatic decrease. To analyze the effects of vacancies and interstitials independently, the mechanical properties of the comparison samples, which only contain randomly distributed vacancies, are investigated. The results indicate that the vacancies are responsible for the change of Young modulus, while the interstitials determine the yield strain.  相似文献   

2.
采用基于量子力学的分子动力学方法,模拟了高能粒子辐照导致钨表面的溅射和结构损伤.结果显示,当PKA能量高于200 eV且入射角度大于65°时开始产生溅射原子,当入射角度在45°-65°之间时,钨表面因受辐照而导致的空位数目最少.因此,当PKA入射角度取在45°-65°之间时,可以有效地降低辐照导致的钨表面的结构损伤.还发现钨表面含有间隙原子时会加剧表面原子溅射,而包含空位原子且PKA取在空位附近时则会抑制表面原子的溅射.  相似文献   

3.
First-principles calculations have been carried out to investigate intrinsic defects including vacancies, interstitials, antisite defects, Frenkel and Schottky defects in the 312 MAX phase Ti3SiC2. The formation energies of defects are obtained according to the elemental chemical potentials which are determined by the phase stability conditions. The most stable self-interstitials are all found in the hexahedral position surrounded by two Ti(2) and three Si atoms. For the entire elemental chemical potential range considered, our results demonstrated that Si and C related defects, including vacancies, interstitials and Frenkel defects are the most dominant defects. Besides, the present calculations also reveal that the formation energies of C and Si Frenkel defects are much lower than those of all Schottky defects considered. In addition, the calculated profiles of densities of states for the defective Ti3SiC2 indicate that these defects should have great influence on its thermal and electrical properties.  相似文献   

4.
王玉珍  马颖  周益春 《物理学报》2014,63(24):246101-246101
采用基于壳模型的分子动力学模拟方法, 研究了存在外延压应变时BaTiO3铁电体的辐射位移效应, 以O原子作为初冲原子(primary knock-on atom, PKA), 能量为1 keV, 方向为[001], 分别计算了外延压应变为0, 0.4%, 0.8%, 1.2%, 1.6%, 2.0%时体系的缺陷数量、分布, 以及辐射前后的极化强度, 比较了压应变为2%以及无应变下损伤区域、缺陷离位距离和反向外电场下PKA的迁移距离. 结果表明, 随外延压应变增加体系极化近似线性增加, 辐射后极化降低幅度降低、缺陷产生的数量有所减小, 2% 压应变存在时缺陷原子的离位距离、PKA在反向外电场作用下的迁移距离和损伤区域都小于无应变的情况, 说明外延压应变的存在对辐射造成的晶格损伤具有抑制作用, 对辐射损伤具有改善作用, 可以通过引入外延压应变来调控BaTiO3的辐射损伤. 关键词: 应变 3')" href="#">BaTiO3 辐射损伤 分子动力学模拟  相似文献   

5.
Fe-Cr合金作为包壳材料在高温高辐照强度等极端环境下服役,产生空位和间隙原子等辐照缺陷,辐照缺陷簇聚诱发空洞、位错环等缺陷团簇,引起辐照肿胀、晶格畸变,导致辐照硬化或软化致使材料失效.理解辐照缺陷簇聚和长大过程的组织演化,能更有效调控组织获得稳定服役性能.本文采用相场法研究Fe-Cr合金中空洞的演化,模型考虑了温度效应对点缺陷的影响以及空位和间隙的产生和复合.选择400—800 K温度区间、0—16 dpa辐照剂量范围的Fe-Cr体系为对象,研究在不同服役温度和辐照剂量下的空位扩散、复合和簇聚形成空洞的过程.在400—800 K温度区间,随着温度的升高,Fe-Cr合金空洞团簇形核率呈现出先升高后下降的趋势.考虑空位与间隙的重新组合受温度的影响可以很好地解释空洞率随温度变化时出现先升高后降低的现象.由于温度的变化将影响Fe-Cr合金中原子离位阀能,从而影响产生空位和间隙原子.同一温度下,空洞半径和空洞的体积分数随辐照剂量的增大而增大.辐照剂量的增大,级联碰撞反应加强,空位与间隙原子大量产生,高温下空位迅速的扩散聚集在Fe-Cr合金中将形成更多数量以及更大尺寸的空洞.  相似文献   

6.
The formation of radiation defects in Si under 1–10-MeV proton bombardment is analyzed. Numerical simulation is carried out, and histograms of the distribution of the energy transferred to recoil atoms are obtained. Two energy ranges are considered when analyzing the histograms. Single Frenkel pairs with closely located components are produced in the first range (small energies). Recoil atoms of the second range have an energy sufficient for the production of a displacement cascade. As a result, nanoscale regions with high densities of vacancies and different types of their complexes appear. In addition, as the energy of the primary knocked-out atoms increases, the average distance between genetically related Frenkel pairs increases, and, as a consequence, the fraction of pairs that are not recombined under bombardment increases.  相似文献   

7.
Preliminary results of radiation damage simulations in rutile, TiO2, are presented. Apart from the strong anisotropy of threshold energy with impulse direction, it has been found that there is a very low threshold energy for oxygen displacement in the basal plane along some <100> directions, of about 10 eV. The defect structures are not simple, with three-ion crowdions and interstitial-divacancy complexes being favoured over interstitials and vacancies.  相似文献   

8.
The basic properties of defects(self-interstitial and vacancy) in BCC iron under uniaxial tensile strain are investigated with atomic simulation methods. The formation and migration energies of them show different dependences on the directions of uniaxial tensile strain in two different computation boxes. In box-1, the uniaxial tensile strain along the100direction influences the formation and migration energies of the110dumbbell but slightly affects the migration energy of a single vacancy. In box-2, the uniaxial tensile strain along the 111 direction influences the formation and migration energies of both vacancy and interstitials. Especially, a 110 dumbbell has a lower migration energy when its migration direction is the same or close to the strain direction, while along these directions, a vacancy has a higher migration energy. All these results indicate that the uniaxial tensile strain can result in the anisotropic formation and migration energies of simple defects in materials.  相似文献   

9.
In the context of studies on long-time storage of irradiated spent fuel, molecular dynamics simulations have been carried out in order to understand the physical phenomena, on the atomic scale, linked to modifications and damage that the uranium dioxide structure undergoes during α-decay irradiation in repository conditions. Simulations of atomic displacement cascades over an energy range from 1 to 20?keV for the initial primary knock-on atom (PKA) do not show any amorphization of the structure in agreement with what has been found experimentally, and there is very little correlation between the initial orientation of the PKA and the cascade morphology. The number of Frenkel pairs, as a function of the initial energy of the PKA, exhibits a power-law behaviour with an exponent of 0.9 which is contrary to the theoretical linear Norgett–Robinson–Torrens law. Finally, for both species the vacancies have a tendency to aggregate and cluster near the core of the cascade while interstitial atoms are preferentially located at the periphery of the branches corresponding to subcascades.  相似文献   

10.
We report on the results of computer simulation of point defect production near voids in crystalline Cu at primary knock-on atom (PKA) kinetic energies ranging from 5 to 1000?eV. The PKA energy dependence of numbers of created defects are revealed. The threshold energy for a stable vacancy formation is found to be much smaller than that for an interstitial atom, which results in a biased formation of vacancies in the void proximity in the whole investigated range of PKA energies. Dissolution of small voids by subthreshold irradiation is simulated. The impact of considered radiation effects on kinetics of radiation damage is discussed.  相似文献   

11.
Shan Feng 《中国物理 B》2022,31(3):36104-036104
When the GaAs/AlGaAs superlattice-based devices are used under irradiation environments, point defects may be created and ultimately deteriorate their electronic and transport properties. Thus, understanding the properties of point defects like vacancies and interstitials is essential for the successful application of semiconductor materials. In the present study, first-principles calculations are carried out to explore the stability of point defects in GaAs/Al0.5Ga0.5As superlattice and their effects on electronic properties. The results show that the interstitial defects and Frenkel pair defects are relatively difficult to form, while the antisite defects are favorably created generally. Besides, the existence of point defects generally modifies the electronic structure of GaAs/Al0.5Ga0.5As superlattice significantly, and most of the defective SL structures possess metallic characteristics. Considering the stability of point defects and carrier mobility of defective states, we propose an effective strategy that AlAs, GaAs, and AlGa antisite defects are introduced to improve the hole or electron mobility of GaAs/Al0.5Ga0.5As superlattice. The obtained results will contribute to the understanding of the radiation damage effects of the GaAs/AlGaAs superlattice, and provide a guidance for designing highly stable and durable semiconductor superlattice-based electronics and optoelectronics for extreme environment applications.  相似文献   

12.
ABSTRACT

As a new generation of low-loss components, 6H-SiC is widely used in optoelectronic devices, electronic devices and other fields, especially in high temperature and strong radiation environment. Radiation will lead to a great large of defects generated in the material, then forming permanent displacement damage which will result in performance down or failure. In this paper, the molecular dynamics method was used to study the spatial distribution of defects and the effect of temperature and PKA energy on the various properties of the point defects. The main contributions were the evolution of defects in 6H-SiC crystal, the influence of PKA energy and temperature on the defect distribution and the number of point defect. In this paper, the spatial distribution of point defects in 6H-SiC crystal after PKA incidence was obtained, the recombination rate under four kinds of energy PKA was calculated, and the effect of temperature and incident PKA energy on the number of defects, the rate of the vacancy cluster and the rate of vacancy defects at steady state were investigated. The results show that the number of defects at steady-state increases linearly with the increase of incident PKA energy, the effect of temperature and energy on defects producing and the rate of clusters are insignificant.  相似文献   

13.
孙祎强  赖文生 《中国物理 B》2017,26(7):76106-076106
A comparative study of cascades in nanostructured ferritic alloys and pure Fe is performed to reveal the influence of Y_2Ti_2O_7 nanocluster on cascades by molecular dynamics simulations. The cascades with energies of primary knock-on atom(PKA) ranging from 0.5 keV to 4.0 keV and PKA's distances to the interface from 0  to 50  are simulated. It turns out that the Y_2Ti_2O_7 nanocluster can absorb the kinetic energy of cascade atoms, prevent the cascade from extending and reduce the defect production significantly when the cascades overlap with the nanocluster. When the cascade affects seriously the nanocluster, the weak sub-cascade collisions are rebounded by the nanocluster and thus leave more interstitials in the matrix. On the contrary, when the cascade contacts weakly the nanocluster, the interface can pin the arrived interstitials and this leaves more vacancies in the matrix. Moreover, the results indicate that the Y_2Ti_2O_7 nanocluster keeps stable upon the displacement cascade damage.  相似文献   

14.
Cross-sectional high resolution transmission electron microscopy has been used to obtain direct information on the in-depth radiation damage distribution of weakly damaged GaAs by Si-ion implantation. A comparison is made between the experimental data and the calculated (using TRIM computer simulations) deposited energy by nuclear stopping for the same conditions. In particular a diffusion zone, with 200–300 Å width, of high point defect concentration beyond the damage peak is detected. These point defects are interpreted as As interstitials. By direct observation, information concerning the damage- and radiation-enhanced diffusion in implanted III–V compound semiconductors is obtained.  相似文献   

15.
Heterostructured (β/γ)-AgI exhibits a spontaneous lattice polarization not accounted for in standard space-charge models. This polarization field dominates the positional variation of energies of isolated defects, and Ag(+) vacancies and interstitials are stabilized at alternate [β/γ] interfaces. This suggests enhanced Frenkel pair separation, analogous to electronic charge separation in polar semiconductor heterostructures. Stoichiometric systems are, however, characterized by associated Frenkel pairs due to strong V(Ag)-Ag(i) interactions and show no enhancement of defect numbers. In nonstoichiometric systems, lattice polarization does direct the distribution of the excess defect species, and defect-defect interactions enhance local Frenkel pair concentrations at interfaces, suggesting that nonstoichiometry is critical to the extreme room-temperature ionic conductivities observed in heterostructured AgI nanoplates.  相似文献   

16.
Reduced-activation ferritic/martensitic steels of Cr concentration between 2.25 and 12?wt% are candidate structural materials for next-generation nuclear reactors. In this study, molecular dynamics (MD) simulation is used to generate the displacement cascades in Fe–Cr structures with different Cr concentrations by using different primary knock-on atom (PKA) energies between 2 and 10?keV. A concentration-dependent model potential has been used to describe the interactions between Fe and Cr. Single crystals (SCs) of three different coordinate bases (e.g. [310], [510], and [530]) and bi-crystal (BC) structures with three different [001] tilt grain boundaries (GBs) (e.g. Σ5, Σ13, and Σ17) have been simulated. The Wigner–Seitz cell criterion has been used to identify the produced Frenkel pairs. The results show a marked difference between collisions observed in SCs and those in BC structures. The numbers of vacancies and interstitials are found to be significantly higher in BC structures than those found in SCs. The number of point defects exhibits a power relationship with the PKA energies; however, the Cr concentration does not seem to have any influence on the number of survived point defects. In BC models, a large fraction of the total survived point defects (between 59% and 93%) tends accumulate at the GBs, which seem to trap the generated point defects. The BC structure with Σ17?GB is found to trap more defects than Σ5 and Σ13?GBs. The defect trapping is found to be dictated by the crystallographic parameters of the GBs. For all studied GBs, self-interstitial atoms (SIAs) are easily trapped within the GB region than vacancies. An analysis of defect composition reveals an enrichment of Cr in SIAs, and in BC cases, more than half of the Cr-SIAs are found to be located within the GB region.  相似文献   

17.
Using the path-integral Monte Carlo method, we calculate the energy to form single and pair vacancies and interstitials in a two-dimensional Wigner crystal of electrons. We confirm that the lowest energy point defects of a 2D electron Wigner crystal are interstitials, with a creation energy roughly 2/3 that of a vacancy. The formation energy of the defects goes to zero at melting, suggesting that point defects may be the melting mechanism and that the melting could be a continuous transition. In addition, we find that the interaction between defects is strongly attractive, so that most defects will exist as bound pairs.  相似文献   

18.
Afshin Arjhangmehr 《哲学杂志》2013,93(21):1803-1823
Abstract

In this paper, by means of atomic-scale simulations, we investigate modifications of the evolution pattern of collision cascades in bcc vanadium (V) with different grain boundary (GB) structures on picosecond (ps) timescale. In primary damage state, in agreement with previous results of bcc and fcc bi-crystals, we find that the GBs in V are biased towards interstitials. The biased absorption of interstitials over vacancies reduces the in-cascade annihilation of vacancy-interstitial pairs and leads to aggregation of more number of vacancies in the grains interiors. The sessile vacancies accumulate in the bulk and form immobile vacancy clusters; in contrast, the glissile interstitials disperse in the damage zone and mostly diffuse in the form of single self-interstitial atoms (SIAs)/di-interstitials towards the GB region. Moreover, meanwhile, as we discuss the mechanisms that reduce (or increase) the concentration of defects in bi-crystal structures on picosecond timescale, we study the energetics of defects in close vicinity of pristine GBs, as an alternative driving force that facilitates formation and accumulation of defects in the GB regions. Finally, in a prolonged irradiation, we examine stability and sink properties of the damaged GBs. The results reveal that, irrespective of GB structure, the presence of grain boundaries leads to aggregation of more number of vacancies in the grain interiors in continuous bombardment. Overall, based on the results obtained in the primary damage event and the prolonged irradiation, we conclude that the GBs in bcc V act as efficient defect sinks on the simulated time frame.  相似文献   

19.
F. Gupta  G. Brillant 《哲学杂志》2013,93(17):2561-2569
Density functional (DFT) calculations have been used to investigate the stability of point defects in uranium dioxide. Correlation effects are taken into account within the DFT?+?U approach as implemented in the Vienna ab initio simulation package (VASP). More particularly, the formation energies of both intrinsic and extrinsic point defects, i.e. vacancies, interstitials, Frenkel pairs and Schottky trio defects, are calculated. Our results are compared with available experimental data and are also discussed in relation to previous calculations based on conventional functionals, such as the local spin-density approximation and generalized gradient approximations.  相似文献   

20.
硅单粒子位移损伤多尺度模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
唐杜  贺朝会  臧航  李永宏  熊涔  张晋新  张鹏  谭鹏康 《物理学报》2016,65(8):84209-084209
本文结合分子动力学方法和动力学蒙特卡罗方法, 研究了单个粒子入射硅引起的位移损伤缺陷的产生和演化过程; 基于Shockley-Read-Hall理论计算了单个粒子入射引起的位移损伤缺陷导致的泄漏电流增加及其演化过程, 比较了缺陷退火因子与泄漏电流退火因子之间的差异, 并将计算结果与实验值进行了对比. 结果表明, 计算泄漏电流时, 仅考虑一种缺陷的情况下缺陷退火因子与泄漏电流退火因子相同, 考虑两种缺陷类型情况下二者在数值上有所区别, 但缺陷退火因子仍能在一定程度上反映泄漏电流的退火行为. 分子动力学模拟中采用Stillinger-Weber势函数和Tersoff势函数时缺陷退火因子和泄漏电流退火因子与实验结果一致, 基于Stillinger-Weber势函数的计算结果与实验值更为接近.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号