首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A mutant strain ofPichia stipitis, FPL-061, was obtained by selecting for growth on L-xylose in the presence of respiratory inhibitors. The specific fermentation rate of FPL-061, was higher than that of the parent,Pichia stipitis CBS 6054, because of its lower cell yield and growth rate and higher specific substrate uptake rate. With a mixture of glucose and xylose, the mutant strain FPL-061 produced 29.4 g ethanol/L with a yield of 0.42 g ethanol/g sugar consumed. By comparison, CBS 6054 produced 25.7 g ethanol/L with a yield of 0.35 gJg. The fermentation was most efficient at an aeration rate of 9.2 mmoles O2 L-1 h-1. At high aeration rates (22 mmoles O2 L-1 h-1), the mutant cell yield was less than that of the parent. At low aeration rates, (1.1 to 2.5 O2 L-1 h-1), cell yields were similar, the ethanol formation rates were low, and xylitol accumulation was observed in both the strains. Both strains respired the ethanol once sugar was exhausted. We infer from the results that the mutant, P.stipitis FPL-061, diverts a larger fraction of its metabolic energy from cell growth into ethanol production.  相似文献   

2.
Scheffersomyces stipitis was cultivated in an optimized, controlled fed-batch fermentation for production of ethanol from glucose–xylose mixture. Effect of feed medium composition was investigated on sugar utilization and ethanol production. Studying influence of specific cell growth rate on ethanol fermentation performance showed the carbon flow towards ethanol synthesis decreased with increasing cell growth rate. The optimum specific growth rate to achieve efficient ethanol production performance from a glucose-xylose mixture existed at 0.1 h?1. With these optimized feed medium and cell growth rate, a kinetic model has been utilized to avoid overflow metabolism as well as to ensure a balanced feeding of nutrient substrate in fed-batch system. Fed-batch culture with feeding profile designed based on the model resulted in high titer, yield, and productivity of ethanol compared with batch cultures. The maximal ethanol concentration was 40.7 g/L. The yield and productivity of ethanol production in the optimized fed-batch culture was 1.3 and 2 times higher than those in batch culture. Thus, higher efficiency ethanol production was achieved in this study through fed-batch process optimization. This strategy may contribute to an improvement of ethanol fermentation from lignocellulosic biomass by S. stipitis on the industrial scale.  相似文献   

3.
Ethanol fermentation with Saccharomyces cerevisiae cells was performed in medium with different glucose concentrations. As the glucose content augmented from 200 to 250 g/L, the growth of the immobilized cells did not change while that of the free cells was reduced. At higher glucose concentration (300, 350, and 400 g/L), the cell proliferation significantly decreased and the residual sugar level sharply augmented for both the immobilized and free yeast. The specific growth rate of the immobilized cells was 27–65 % higher than that of the free cells, and the final ethanol concentration in the immobilized yeast cultures was 9.7–18.5 % higher than that in the free yeast cultures. However, the immobilized yeast demonstrated similar or slightly lower ethanol yield in comparison with the free yeast. High fermentation rate of the immobilized yeast was associated with low unsaturation degree of fatty acids in cellular membrane. Adsorption of S. cerevisiae cells on water hyacinth stem pieces in the nutritional medium decreased the unsaturation degree of membrane lipid and the immobilized yeast always exhibited lower unsaturation degree of membrane lipid than the free yeast in ethanol fermentation.  相似文献   

4.
When tobacco is pyrolysed under non-isothermal flow conditions in an inert atmosphere, variation of the inert gas or its space velocity has only a minor effect on the profiles of formation rate versus temperature for seven product gases. Thus, mass transfer processes between the tobacco surface and the gas phase are very rapid, and the products are formed at an overall rate which is determined entirely by that of the chemical reactions.The effect of radical chain inhibitors (nitrogen oxides) on the pyrolysis is complex because of the resultant oxidation. Nevertheless, no evidence was found for the occurrence of radical chain reactions in the gas phase. A small proportion (less than 10%) of all the gases monitored are formed by homogeneous decomposition of volatile and semi-volatile intermediate products, in the furnace used.At temperatures above about 600°C the reduction of carbon dioxide to carbon monoxide by the carbonaceous tobacco residue becomes increasingly important. However, when tobacco is pyrolysed in an inert atmosphere, only a small amount of carbon dioxide is produced above 600°C and consequently its reduction to carbon monoxide contributes only a small proportion to the total carbon monoxide formed above that temperature. The rate of the tobacco/carbon dioxide reaction is controlled by chemical kinetic rather than mass transfer effects. Carbon monoxide reacts with tobacco to a small extent.When the tobacco is pyrolysed in an atmosphere containing oxygen (9–21% v/v), some oxidation occurs at 200°C. At 250°C the combustion rate is controlled jointly by both kinetic and mass transfer processes, but mass transfer of oxygen in the gas phase becomes increasingly important as the temperature is increased, and it is dominant above 400°C. About 8% of the total carbon monoxide formed by combustion is lost by its further oxidation.The results imply that inside the combustion coal of a burning cigarette the actual reactions occurring are of secondary importance, the rate of supply of oxygen being the dominant factor in determining the combustion rate and heat generation. In contrast, in the region immediately behind the coal, where a large proportion of the products which enter mainstream smoke are formed by thermal decomposition of tobacco constituents, the chemistry of the tobacco substrate is critical, since the decomposition kinetics are controlled by chemical rather than mass transfer effects. tobacco substrate is critical. In addition, the heat release or absorption due to the pyrolytic reactions occurring behind the coal will depend on the chemical composition of the substrate. Thus, together with the differing thermal properties of the tobacco, the temperature gradient behind the coal should depend on the nature of the tobacco.  相似文献   

5.
Bioconversion of undetoxified hemicellulosic hydrolyzate from steam-exploded corn stover was investigated with a domesticated Pichia stipitis CBS 5776. The countercurrent washing was applied to recover sugars from the steam-exploded corn stover, which could enrich sugars in washing liquor and give an efficient saving of water. Acid concentration, reaction temperature, and time were optimized for the acid post-hydrolysis of oligosaccharides in steam-exploded prehydrolyzate by a central composite design and response surface methodology. The domestication of P. stipitis to the hydrolyzate resulted in improving sugar consumption and ethanol yield by gradually increasing the ratio of hydrolyzate in the medium. Recycling utilization of the domesticated yeast demonstrated that the yeast kept a stable ability of fermenting both hexose and pentose in the undetoxified hydrolyzate. The sugar consumption and ethanol yield were over 90 and 80?%, respectively.  相似文献   

6.
Ethanol     
Ethanol can be directly blended with gasoline, reacted with isobutylene to form the oxygenated fuel additive ethyl tert-butyl ether (ETBE), or burned directly as a neat fuel. Blends of either ethanol or ETBE with gasoline force engines set for gasoline to run lean and can substantially reduce carbon monoxide emissions. ETBE also lowers the overall vapor pressure, thereby cutting back on smog-forming emissions. Neat ethanol further reduces smog formation since it has a low volatility, the photochemical reactivity of ethanol and its combustion products is low, and low levels of smog producing compounds are formed by ethanol combustion. Neat ethanol also offers good engine performance owing to its high heat of vaporization, high octane, and low flame temperature. Fermentation stoichiometry reveals that many feedstocks are expensive for fuels production even considering coproduct credits and ignoring conversion costs, whereas lignocellulosic feedstocks cost much less than their value. Furthermore, the quantities of lignocellulosics are projected to be ample even for neat ethanol production. Release of carbon dioxide during fermentation concentrates almost all the heat of combustion from the solid carbohydrate portion in liquid ethanol. Since the carbon dioxide released during production and use of ethanol is recycled during growth of biomass, ethanol utilization doesn’t contribute to the accumulation of carbon dioxide in the atmosphere and possible global warming.  相似文献   

7.
The genusPropionibacterium acidipropionici was grown under pH-controlled batch fermentation conditions for the production of acetic and propionic acids using 19.1 g/L glucose as a carbon source. The optimum pH range was found to be between 5.5 and 6.5. Bacterial metabolism and fermentation pathways were altered at pH values outside this range. Lactic acid was produced as a key intermediate, with the final acetic and propionic acid production entirely dependent on the cell's ability to metabolize the lactic acid. Most of the glucose in the medium was consumed in less than 20 h of fermentation and converted to lactic acid. Batch fermentation at pH 6 showed that lactic acid was completely utilized to produce 8.5 g/L propionic acid and 5.7 g/L acetic acid. However, the bacteria were unable to metabolize lactic acid at pH 7, resulting in 0.7 g/L propionic acid and 7.0 g/L acetic acid in the fermenter. A kinetic study of batch fermentation at pH 6 showed two distinct growth phases during the fermentation. Most of the cell growth was achieved in the exponential growth stage when glucose was consumed as a main substrate. A nonexponential growth stage was observed when lactic acid was utilized as a carbon source, producing propionic and acetic acids as secondary metabolites.  相似文献   

8.
The studies on the synthesis and thermal properties of linear neryl diesters were presented. The linear neryl diesters can be successfully obtained during butylstannoic catalyzed esterification process. The final conversion of nerol and carboxylic groups was higher than 95 % using a stoichiometric molar ratio of reagents in mild conditions. The high yield products were prepared after longer time than previously studied geranyl diesters. It was directly connected with the steric hindrance and lower susceptibility of nerol to esterification process than geraniol. The TG/FTIR/QMS studies proved that the thermal properties and decomposition mechanism of neryl diesters differ considerably in inert and oxidative atmosphere. The diesters were thermally stable up to 200 °C in inert atmosphere. Their decomposition was run as a one-step process. The analyses of the volatile products emitted during their pyrolysis indicated on the ester and O-neryl bonds cleavage. It resulted in the formation of monoterpene hydrocarbons, cyclic acid anhydrides, ketones, or aldehydes. However, the studied compounds were less thermally stable in air than in helium. Their decomposition happened in two steps. The first step ranges from 185–228 °C to almost 326–380 °C with mass loss above 88 %. The formation of acyclic or alicylic monoterpene hydrocarbons, cyclic acid anhydrides, ketones, alkenes, alkanes, carbon dioxide, and water was expected. It indicated on the asymmetrical distrupt of the bonds, partial oxygenation, and decarboxylation of emitted gaseous fragments. The second step of decomposition was observed in temperatures ranges from 380 to above 560 °C. In this step carbon dioxide and water were mainly emitted. It was the result of the oxidation of the residue formed during the fist step.  相似文献   

9.
The thermal dehydration of yttrium formate dihydrate and decomposition of yttrium formate anhydride were studied in flowing nitrogen and carbon dioxide atmospheres by means of TG and DTA.The dehydration reaction was not affected by the atmospheric condition and took place successively without any intermediate hydrate. The mechanism of the dehydration reaction was found to be a phase boundary controlled interface reaction.The decomposition of yttrium formate occurred in three stages, and yttrium oxyformate and yttrium oxycarbonate were formed as the intermediate products.In a carbon dioxide atmosphere, the decomposition took place at a higher temperature than in a nitrogen atmosphere.The anhydrous salt melted during the main stage of the decomposition and the kinetic behaviour of this stage was characteristic of a homogeneous first order reaction.  相似文献   

10.
Thermal properties of linear citronellyl diesters were studied by TG/DSC/FTIR/QMS-coupled method in inert and oxidative atmospheres. The diesters decompose in one main step in inert atmosphere. As main pyrolysis products, the formation of mainly monoterpene hydrocarbons, acid anhydrides, monoacids, cyclic ketones, aldehyde fragments, carbon dioxide, and water was observed. It was indicated on the ester and O-citronellyl bonds cleavage, partial decarboxylation, and elimination of water from formed dicarboxylic acids during their pyrolysis. The decomposition in air runs in two steps. The first step was connected with the creation of monoterpene hydrocarbons, monoacids, cyclic ketones, aldehydes, carbon dioxide, carbon monoxide, and water. In the second step of decomposition, mainly carbon dioxide and water were produced. It was testified to ester and O-citronellyl bonds cleavage, partial oxygenation, and decarboxylation process of the primary formed decomposition products.  相似文献   

11.
Conflicting results have been reported by different workers on the thermal decomposition of silver carbonate, Ag2CO3. In the present study, the decomposition mechanism was elucidated by various analytical methods; gas analysis (differential thermal gas analyses) in helium, carbon dioxide and oxygen flows with and without a P2O5 trap or a KOH trap, DTA-TG in a carbon dioxide flow and high-temperature X-ray diffraction analysis in a carbon dioxide flow. The gas evolution at ca. 200?C consisted of carbon dioxide. A simultaneous evolution of carbon dioxide and oxygen occurred at ca. 400?C. Two endothermic peaks (ca. 189 and 197?C) without weight change during the heating in a carbon dioxide atmosphere were due to the phase transition of silver carbonate from the normal viaΒ toα phase. The reverse transition occurred during the cooling.  相似文献   

12.
A unicellular marine green alga, Chlamydomonas perigranulata, was demonstrated to synthesize starch through photosynthesis, store it in a cell, and ferment it under anaerobic conditions in the dark to produce ethanol, 2,3-butanediol (butanediol), acetic acid, and carbon dioxide (CO2). Previous fermentation data of an algal biomass cultivated outdoors in a 50-L tubular photo-bioreactor showed good carbon (C) recovery in the fermentation balance, with a higher ratio to alcohols and, therefore, lower ratio to CO2 in the C distribution of products than what would be expected from the embden-Myerhof-Parnas pathway. These findings led to a proposed concept for a CO2-ethanol conversion system (CDECS). The above data were evaluated in terms of hydrogen (H) recovery with the following results: C recovery at 105% was well balanced, although H recovery was as high as 139%, meaning an additional gain of H through fermentation. This finding was reproduced wholly in a set of experiments carried out in the same month of the following year, October, whereas another set of experiments was carried out in the following June provided ordinary fermentation results in terms of C and H recoveries with poor growth. Further analyses of these data revealed that butanediol is equal to ethanol as a product from a putative conversion system from CO2 to the detected fermentation products, leading to the revision of the CDECS concept to a CO2-alcohol conversion system (CDACS). The relevance of the CDACS will be discussed in relation to the cultivation conditions employed by chance.  相似文献   

13.
Comb-shaped copolymers of perfluorohexylethyl methacrylate and methacryloxypropyl-terminated polydimethylsiloxane are synthesized by radical polymerization in supercritical carbon dioxide, solubility of the copolymers in supercritical carbon dioxide is studied, and hydrophobic properties of thin films obtained via precipitation of the copolymers from trifluorotrichloroethane and supercritical carbon dioxide solutions on substrates are examined. On the basis of water and dimethyl sulfoxide contact angle measurements, the specific free surface energy of the formed films is calculated. It is shown that the thin films of the copolymers have a lower surface energy and are characterized by a smaller water contact angle hysteresis than the films based on homopolymer poly(perfluorohexylethyl methacrylate). A comparative testing of coatings based on the homopolymer and copolymer deposited from solutions in supercritical carbon dioxide on the surface of nylon fabrics is performed. It is found that copolymer-coated fabrics have on average higher water contact angles.  相似文献   

14.
采用三种高硫煤,在固定床反应器中考察了原煤在空气、空气水蒸气和空气氮气气氛下低温氧化预脱硫过程的影响因素,包括煤种(总硫含量、形态硫分布和挥发分含量)和化学反应条件(温度、停留时间)。脱硫前后的样品中硫及硫形态、热值、工业分析和元素分析依据国际进行测定。实验结果表明硫及碳质的氧化在开始阶段以不同的速率析出,随后反应中差别减小;黄铁矿硫可得到高的脱除率;水蒸气适当比例的加入可以增加黄铁矿的脱除,同时降低碳的转化和热量的损失;而氮气的加入在降低碳和热量的损失外,降低了硫的脱除。  相似文献   

15.
Isothermal and non-isothermal decomposition of hydromagnesite 4 MgCO3 · Mg(OH)2 · 4 H2O was studied thermogravimetrically. Decarbonation was strongly influenced by the partial pressure of carbon dioxide. Decarbonation in an argon atmosphere proceeded via an amorphous lower carbonate to MgO. Decarbonation in a carbon dioxide atmosphere was interrupted at ~460–480°C. This interruption was explained by the formation of a metastable intermediate and the subsequent crystallization of MgCO3, both from the amorphous lower carbonate. This explanation was supported by DTA and power X-ray diffraction analysis of the quenched specimens.  相似文献   

16.
To decompose carbon dioxide, which is a representative greenhouse gas, a 3-phase gliding arc plasmatron device was designed and manufactured to examine the decomposition of CO2, either alone or in the presence of methane with and without water vapour. The changes in the amount of carbon dioxide feed rate, the methane to carbon dioxide ratio, the steam to carbon dioxide ratio, and the methane to steam ratio were used as the parameters. The carbon dioxide conversion rate, energy decomposition efficiency (EDE), carbon monoxide and hydrogen selectivity, and produced gas concentration were also investigated. The maximum values of the carbon dioxide conversion rate, which is a key indicator of carbon dioxide decomposition, in different cases were compared. The maximum carbon dioxide conversion rate was 12.3 % when pure carbon dioxide was supplied; 34.5 % when methane was injected as a reforming additive; 7.8 % when steam was injected as a reforming additive; and 43 % when methane and steam were injected together. Therefore, this could be explained that the methane-and-steam injection showed the highest carbon dioxide decomposition, showing low EDE as 0.01 L/min W. Furthermore, the plasma produced carbon-black was compared with commercial carbon-black chemicals through Raman spectroscopy, surface area measurement and scanning electron microscopy. It was found that the carbon-black that was produced in this study has the high conductivity and large specific surface area. Our product makes it suitable for special electric materials and secondary battery materials applications.  相似文献   

17.
Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H2/mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.  相似文献   

18.
A unicellular marine green alga, Chlamydomonas perigranulata, was demonstrated to synthesize starch through photosynthesis, store it in a cell, and ferment it under anaerobic conditions in the dark to produce ethanol, 2,3-butanediol (butanediol), acetic acid, and carbon dioxide (CO(2)). Previous fermentation data of an algal biomass cultivated outdoors in a 50-L tubular photo-bioreactor showed good carbon (C) recovery in the fermentation balance, with a higher ratio to alcohols and, therefore, lower ratio to CO(2) in the C distribution of products than what would be expected from the embden-Myerhof-Parnas pathway. These findings led to a proposed concept for a CO(2)-ethanol conversion system (CDECS). The above data were evaluated in terms of hydrogen (H) recovery with the following results: C recovery at 105% was well balanced, although H recovery was as high as 139%, meaning an additional gain of H through fermentation. This finding was reproduced wholly in a set of experiments carried out in the same month of the following year, October, whereas another set of experiments was carried out in the following June provided ordinary fermentation results in terms of C and H recoveries with poor growth. Further analyses of these data revealed that butanediol is equal to ethanol as a product from a putative conversion system from CO(2) to the detected fermentation products, leading to the revision of the CDECS concept to a CO(2)-alcohol conversion system (CDACS). The relevance of the CDACS will be discussed in relation to the cultivation conditions employed by chance.  相似文献   

19.
The amount of citric acid (CA) produced by Yarrowia lipolytica is dependent on the yeast strain and growth conditions such as pH, oxygen availability and medium composition. In this work, an experimental design based on the Taguchi method was applied to evaluate the effect of parameters: pH, carbon/nitrogen (C/N) ratio in the medium, oxygen mass transfer rate (OTR) and salts concentration, on the CA production by two Y. lipolytica strains, W29 (ATCC 20460) and CBS 2073. OTR and pH showed higher influence on the CA production for both strains. The increase of OTR from air to the culture medium led to a two- and three-fold improvement of the CA production by Y. lipolytica CBS 2073 and W29, respectively. Besides the individual effects of the parameters, a significant influence of the interaction between these parameters was observed, mainly between OTR and salts. Different values of the parameters were found at the optimum conditions for each strain, but the theoretically predicted and experimentally obtained citric acid concentrations (cCA) were approximately 10 g L?1 for both strains. The optimal conditions were also validated employing crude glycerol from biodiesel industry as a substrate, and similar behavior of the strains was observed.  相似文献   

20.
Possibility of raising the efficiency of the monoethanolamine purification of gas mixtures to remove carbon dioxide is demonstrated with consideration for the real intermolecular interactions and the structuring in the absorbent solution. The composition and structure of individual aqueous monoethanolamine solutions with various concentrations and of the same solutions saturated with carbon dioxide were examined. The methods of viscometry and conductometry demonstrated that, at monoethanolamine concentrations exceeding 12 ± 2 wt %, micelles are formed on the background of the existence of associates with intermolecular hydrogen bonds. This necessitates use of high temperatures (120?140°C) in the stage of carbon dioxide desorption. It was found that using a 12 wt % aqueous solution of monoethanolamine in purification of gas mixtures makes it possible to lower the desorption temperature of carbon dioxide to 90°C. This process is more efficient than the standard technology of CO2 removal from a 30 wt % monoethanolamine solution. This is so because, in addition to a lower expenditure of heat, the extraction of carbon dioxide grows by 16% at a simultaneous decrease in the absorbent expenditure by at least a factor of 2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号