首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the results of a theoretical investigation into the magnetic and resonance properties of thin films in the range of the transition from a paramagnetic state to a ferromagnetic state in the case where the magnetic transition is a first-order phase transformation. It is demonstrated that, in an external magnetic field directed perpendicular to the film plane, the formation of a specific domain structure consisting of domains of the coexisting paramagnetic and ferromagnetic phases can appear to be energetically favorable. The parameters of the equilibrium system of stripe phase domains and their dependences on the temperature, the magnetic field, and the characteristics of the material are calculated. The specific features of the magnetic resonance spectra under the conditions of formed stripe phase domains are considered. A relationship is derived for the dependence of the resonance field of the system of ferromagnetic domains on the magnetization and temperature. It is shown that the alternating external field can fulfill an orientation function in the formation of stripe phase domains.  相似文献   

2.
The magnetic and resonance properties of cylindrical magnets at first-order phase transition from paramagnetic to ferromagnetic state were theoretically studied. It has been shown that in the external magnetic field directed perpendicularly to the rotation axis, formation of a specific domain structure of paramagnetic and ferromagnetic layers can be energetically favorable. The parameters of cylindrical phase domains as well as their dependences on temperature, magnetic field and material characteristics have been calculated. Peculiarities of the magnetic resonance spectra appearing as a result of the phase domain formation have been considered. Dependence of the resonance field of the system of ferromagnetic domains on magnetization and temperature has been obtained.  相似文献   

3.
An anomalously strong relaxation of the muon polarization in a magnetically ordered state in the TbMnO3 multiferroic has been revealed by the method below the μSR Néel temperature (42 K). Such a relaxation is due to the muon channel of relaxation of the polarization and the interaction of the magnetic moment of the muon with inhomogeneities of the internal magnetic field of an ordered state in the form of a cycloid. Above the Néel temperature, beginning with temperatures depending on the applied magnetic field, a two-phase state has been revealed where one phase has an anomalously strong relaxation of the muon polarization for a paramagnetic state. These features of the paramagnetic state are due to short-range magnetic order domains that appear in strongly frustrated TbMnO3. A true paramagnetic state has been observed only at T ≥ 150 K.  相似文献   

4.
A generalized mean field theory is constructed for a system of rodlike Ising magnetic dipoles of a finite length a with configuration disorder. The theory is based on an analysis of the local magnetic field distribution function. It is shown that the magnetic state of such a system is determined by the dipole concentration n: the system is paramagnetic for na3 ? 5×102, while ferromagnetic ordering exists for na3 ? 5×102. The susceptibility of the system in the paramagnetic state is determined.  相似文献   

5.
Studies of the structure and magnetic properties of layers formed on nonmagnetic substrates by laser powder fusing (LPF) showed that crystalline phases are separated from initial powders of bronze, inconel (IN 625), and PGSR-4with the transformation of nonmagnetic materials to soft ferromagnets. The fused bronze powder layer exhibits soft ferromagnetic properties with two types of magnetic domains with the Curie temperatures of 80 and 300 K and a coercivity to 90 Oe at 300 K; in layers based on In625 and PGSR-4, only one type of magnetic domains with the Curie temperatures of 260–270 K is formed, which provides soft ferromagnetic properties at 4 К and the paramagnetic transition at 300 K.  相似文献   

6.
The study of the transition between ferromagnetic and paramagnetic states has been investigated on selected metallic glass systems based on Fe-Ni-Nb-B and Fe-Co-Mo-Cu-B with TC close to room temperature. Samples in the form of ribbons were prepared by planar flow casting and magnetostriction in parallel and perpendicular directions and saturation magnetostrictions have been determined on these samples in as-cast states together with hysteresis loops. In addition, a magneto-optic device for dynamic domain observation has been used for observation of domain structure. Magnetostriction measurements using direct method of measurement show the decrease of saturation magnetostriction towards zero upon approaching TC. In paramagnetic state the field dependencies of magnetostriction in parallel and perpendicular configurations exhibit a linear dependence on the external magnetic field. In the transition region of temperatures the dependencies are a combination of ferromagnetic and paramagnetic field dependencies. The coercivity HC in the materials investigated exhibits values below 20 A/m. The observed magnetic domains are typical for this class of amorphous alloys. The polarization in paramagnetic state increases gradually with increase in magnetizing field, reflecting the increasing amount of polarized regions.  相似文献   

7.
The new class of phenomena described in this review is based on the interaction between spatially separated, but closely located ferromagnets and superconductors, the so-called ferromagnet–superconductor hybrids (FSH). Typical FSH are: coupled uniform and textured ferromagnetic and superconducting films, magnetic dots over a superconducting film, magnetic nanowires in a superconducting matrix, etc. The interaction is provided by the magnetic field generated by magnetic textures and supercurrents. The magnetic flux from magnetic structures or topological defects can pin vortices or create them, changing the transport properties and transition temperature of the superconductor. On the other hand, the magnetic field from supercurrents (vortices) strongly interacts with the magnetic subsystem, leading to formation of coupled magnetic–superconducting topological defects.

The proximity of ferromagnetic layer dramatically changes the properties of the superconducting film. The exchange field in ferromagnets not only suppresses the Cooper-pair wavefunction, but also leads to its oscillations, which in turn leads to oscillations of observable values: the transition temperature and Josephson current. In particular, in the ground state of the Josephson junction the relative phase of two superconductors separated by a layer of ferromagnetic metal is equal to?π?instead of the usual zero (the so-called π-junction). Such a junction carries a spontaneous supercurrent and possesses other unusual properties. Theory predicts that rotation of magnetization transforms s-pairing into p-pairing. The latter is not suppressed by the exchange field and serves as a carrier of long-range interaction between superconductors.  相似文献   

8.
9.
Nd0.75Na0.25MnO3 polycrystalline ceramic is prepared via sol-gel process and its magnetic properties and electron spin resonance (ESR) spectra have been investigated experimentally. As the compound is cooled from room temperature, a charge-ordered state first develops below 170 K. A high magnetic field melts the charge ordered state and stabilizes a ferromagnetic (FM) state below 170 K. A field induced transition, analogous to a spin flip transition, is observed between 40 and 170 K. The critical temperature for spin flip increases with increasing temperature. Below 130 K, the compound tends to be intrinsically inhomogeneous, i.e. FM clusters and paramagnetic domains coexist in this system at least, which is confirmed by ESR measurements. When the external magnetic field is zero, long range FM interaction is not developed in this system; however, a tendency of re-entrant FM transition is observed in this compound.  相似文献   

10.
In this work, we analyze the nonmagnetic random disorder leading to a formation of ferromagnetic clusters in diluted magnetic semiconductors. The nonmagnetic random disorder arises from randomness in the host lattice. Including the disorder to the Kondo lattice model with random distribution of magnetic dopants, the ferromagnetic–paramagnetic transition in the system is investigated in the framework of dynamical mean-field theory. At a certain low temperature one finds a fraction of ferromagnetic sites transiting to the paramagnetic state. Enlarging the nonmagnetic random disorder strength, the paramagnetic regimes expand resulting in the formation of the ferromagnetic clusters.  相似文献   

11.
The influence of spin fluctuations on the magnetic properties of the ferromagnetic helimagnet MnSi has been studied in the Hubbard model taking into account the antisymmetric relativistic Dzyaloshinskii–Moriya interaction for band electrons. The obtained equations of the magnetic state indicate the correlation between the fine structure of the density of electronic states and the magnetization and coefficient of mode–mode coupling. It has been shown that the position of the Fermi energy in the immediate proximity on the point of the local minimum of the density of electronic states leads to large zero spin fluctuations at low magnetization of the helimagnet. When approaching from down the Néel point (approximately, at 0.9TN), the zero fluctuation disappear, and the temperature rise of thermal spin fluctuation is accompanied by the change in the sign of the coefficient of mode–mode coupling. A magnetic field perpendicular to the helicoids plane brings about the formation and subsequent “collapse” of the helimagnetic cone. However, the condition of the change in the sign of the coefficient of mode–mode coupling divides the MnSi phase diagram into two parts, one of which corresponds to the ferromagnetic state induced by the field, and the other corresponding to the paramagnetic state. In this case, the h–T diagram has a specific region, inside which the paramagnetic and the ferromagnetic state are instable. The boundaries of the region agree with the experimental data on the boundaries of the anomalous phase (a phase). It has been found that the results of calculations of the temperature dependence of the magnetic susceptibility agree with the experimental data.  相似文献   

12.
Hao Zhu 《中国物理 B》2022,31(4):40306-040306
We investigate the vortex structures excited by Ioffe-Pritchard magnetic field and Dresselhaus-type spin-orbit coupling in F=2 ferromagnetic Bose-Einstein condensates. In the weakly interatomic interacting regime, an external magnetic field can generate a polar-core vortex in which the canonical particle current is zero. With the combined effect of spin-orbit coupling and magnetic field, the ground state experiences a transition from polar-core vortex to Mermin-Ho vortex, in which the canonical particle current is anticlockwise. For fixed spin-orbit coupling strengths, the evolution of phase winding, magnetization, and degree of phase separation with magnetic field are studied. Additionally, with further increasing spin-orbit coupling strength, the condensate exhibits symmetrical density domains separated by radial vortex arrays. Our work paves the way to explore exotic topological excitations in high-spin systems.  相似文献   

13.
The spin configuration in a magnet is in general a "natural" consequence of both the intrinsic properties of the material and the sample dimensions. We demonstrate that this limitation can be overcome in a homogeneous ferromagnetic film by engineering an anisotropy contrast. Substrates with laterally modulated single-crystal and polycrystalline surface regions were used to induce selective epitaxial growth of a ferromagnetic Ni film. The resulting spatially varying magnetic anisotropy leads to regular perpendicular and in-plane magnetic domains, separated by a new type of magnetic wall---the "anisotropy constrained" magnetic wall.  相似文献   

14.
J Qin  X Jian  Q Gu 《J Phys Condens Matter》2012,24(36):366007
The magnetic properties of a charged spin-1 Bose gas with ferromagnetic interactions are investigated within mean-field theory. It is shown that a competition between paramagnetism, diamagnetism and ferromagnetism exists in this system. It is shown that diamagnetism, being concerned with spontaneous magnetization, cannot exceed ferromagnetism in a very weak magnetic field. The critical value of reduced ferromagnetic coupling of the paramagnetic phase to ferromagnetic phase transition [Formula: see text] increases with increasing temperature. The Landé-factor g is introduced to describe the strength of the paramagnetic effect which comes from the spin degree of freedom. The magnetization density [Formula: see text] increases monotonically with g for fixed reduced ferromagnetic coupling [Formula: see text] as [Formula: see text]. In a weak magnetic field, ferromagnetism makes an immense contribution to the magnetization density. On the other hand, at a high magnetic field, the diamagnetism tends to saturate. Evidence for condensation can be seen in the magnetization density at a weak magnetic field.  相似文献   

15.
邓东阁  左苏  武新军 《物理学报》2018,67(17):178103-178103
便捷获取铁磁承载构件应力对维护基础设施安全具有重要意义.其关键在于准确快速地确定随应力变化灵敏度高、线性度好的表征参数.现有电磁检测法一般在时变磁场线圈激励下,逐点分析实验结果来确定合适的表征参数,会带来线圈发热、涡流影响结果的问题,表征磁参数的确立繁琐.为此,本文提出基于表面磁感应强度的铁磁构件应力恒磁表征方法,采用永磁恒定磁化器产生全局衰减局部均匀的空间变化磁场作激励,用正交磁场测量单元拾取构件表面轴向和法向磁感应强度以表征应力.着重阐述基于表面磁感应强度的应力表征原理:根据退磁场理论、磁场强度切向连续性和磁场高斯定理,建立表面轴向和法向磁感应强度关于应力导函数之间的关系方程.最后开展实验验证.结果表明:根据该关系方程可快速准确地确定随应力灵敏度最高的表面磁感应强度,且其随应力变化线性度较好,拟合优度R2大于0.98,可作为应力表征磁参数.本文所提方法可为在线检测铁磁构件应力提供新途径.  相似文献   

16.
The magnetic flux trapping by surface superconductivity is considered. The stability of the state localized at the cylindrical sample surface upon a change in the external magnetic field is tested. It is shown that as the magnetic field decreases, the sample acquires a positive magnetic moment due to magnetic flux trapping; i.e., the magnetization curve of surface superconductivity is “paramagnetic” by nature.  相似文献   

17.
The bilayer manganite La1.2Sr1.8Mn2O7 exhibits a phase transition from a paramagnetic insulating (PI) to a ferromagnetic metallic (FM) state with a colossal magnetoresistance (CMR) effect. Upon 60% Pr substitution, magnetic order and PI to FM transition are suppressed. Application of a moderate magnetic field restores an FM state with a CMR effect. Neutron scattering by a single crystal of (La0.4Pr0.6)1.2Sr1.8Mn2O7, under a magnetic field of 5 T, has revealed a long-range and homogeneous ferromagnetic order. In the PI phase, under zero field, correlated lattice polarons have been detected. At 28 K, under 5 T, the spin wave dispersion curve determines an in-plane isotropic spin wave stiffness constant of 146 meV A(2). So the magnetic field not only generates a homogeneous ferromagnetic ground state, but also restores a magnetic coupling characteristic of FM CMR manganites.  相似文献   

18.
The quantum teleportation via a two-qubit Ising Heisenberg chain in the presence of an external magnetic field with an arbitrary direction are investigated. The effect of the orientation of an external magnetic field on the entanglement teleportation has been analyzed numerically. It is found that the teleported thermal concurrence and average fidelity can be maximized by rotating the magnetic field (with fixed magnitude) to an optimal direction. The ferromagnetic channel is not suitable to teleportation. A minimal entanglement of the thermal state is needed to realize the entanglement teleportation for antiferromagnetic channel. It is also found that the entanglement of the channel cannot completely reflect the teleported concurrence and average fidelity. There exist double-value phenomena between them.  相似文献   

19.
An analysis was made of the magnetic susceptibility, electrical resistivity, and magnetoresistance of (La1?yPry)0.7Ca0.3MnO3 samples differing in Pr content and enriched in the oxygen isotope 18O. At high temperatures, all samples were paramagnetic insulators, while below 60 K, part of them transferred to a ferromagnetic metallic state. All the samples exhibit practically identical behavior of the susceptibility, resistivity, and magnetoresistance in the high-temperature region, despite a noticeable difference between their properties at low temperatures; more specifically, the magnetoresistance grows quadratically with magnetic field within a broad range of temperatures and magnetic fields and scales with increasing temperature close to 1/T5. A combined analysis of the magnetic susceptibility and magnetoresistance indicates the possible existence of an inhomogeneous state with considerable ferromagnetic correlations in the paramagnetic region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号