首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a study of ferromagnetic resonance in amorphous FexNi80-xP14B6 for Fe concentrations down to that required for ferromagnetism. The resonance was studied at microwave frequencies between 10 and 35 GHz and at temperatures between 2 and 300 K. We find i) in accord with previous data on amorphous ferromagnets, each alloy investigated is magnetically inhomogeneous even in its ferromagnetic state, ii) the intrinsic relaxation parameter λ / Mγ for each alloy falls between the value for pure Fe and the value for pure Ni, iii) a low temperature linewidth rise which is frequency independent and follows an empirical form suggested earlier, iv) frequency dependent linewidth maxima at low T which do not correspond to low field spin freezing temperatures, and v) anisotropy fields intruding at low temperatures. The corresponding anisotropy energy is similar to that proposed for spin glasses as are the temperature and frequency dependences of the anisotropy constant. With part II of this paper, this represents the most complete resonance study to date of the evolution of spin glass behavior in Fe based alloys.  相似文献   

2.
3.
We have shown that, for a number of systems which undergo a spin glass type transition, the temperature dependence of the ESR linewidth (above the freezing temperature) exhibits a single simplified form which can be roughly understood on the basis of elementary assumptions. Remarkably, the linewidth of ferromagnetic resonance observed in the surface layer of a?Y1?xFex alloys exhibits the same dependence on temperature.  相似文献   

4.
Temperature dependence (3–300 K) of the electrical conductivity in a number of amorphous Zr1?xMx alloys (M = Cu, Ni, Co and Fe, 0.19 < x < 0.71) has been analysed in some detail. Like in some other alloys with a high electrical resistivity, the conductivity varies as T at lower temperatures (T < 80 K) and √T at higher temperatures. A new feature observed is that the ratio of the coefficients of a low temperature T and a high temperature √T conductivity variation is practically constant for allalloys. Therefore a universal conductivity-temperature curve can be constructed for all amorphous Zr1?xMx alloys with the resistivity higher than 150 μohms cm. These results are consistent with the effects of incipient localisation and indicate that the electron-phonon coupling determines the conductivity variation.  相似文献   

5.
Electron spin resonance (ESR) measurements have been performed on polycrystalline samples of Pr1−xCaxMnO3 (x=0.4, 0.5) in the temperature range of 100-300 K. The temperature dependence of ESR intensity, g value and linewidth shows the existence of ferromagnetic spin correlations in the paramagnetic state. With decreasing temperature, the ferromagnetic spin correlations switch to antiferromagnetic spin correlations in the charge ordering state and vanish at the antiferromagnetic ordering temperature TN.  相似文献   

6.
The temperature and angular dependence of the X-band electron spin resonance (ESR) and51V nuclear magnetic resonance (NMR) spectra have been measured in a recently discovered Haldenegap system, PbNi2-xMgxV2O8 (0≤x≤0.24). The angular dependence of the ESR signal suggests that both the spin diffusion as well as the magnetic anisotropy determine the electronic spin correlation functions. However, in doped samples the magnetic anisotropy increasingly dominates the spin dynamics on cooling. The huge broadening of the51V NMR spectra in doped samples at low temperatures provides evidence for localized magnetic moments in the vicinity of the Mg impurities. Locally distorted structure around each Mg impurity may slightly modify the magnetic interactions and be potentially responsible for the antiferromagnetic ordering (belowT N≈ 3.5K) in doped compositions.  相似文献   

7.
Small angle neutron scattering (SANS) and inelastic neutron scattering studies were performed on a polycrystalline sample of (Pd9 9.65Fe0.35)95Mn5. This system exhibits a sequence of phase transitions from a paramagnetic to ferromagnetic state and then a transition to spin-glass-like behavior near TSG = 3.0 K. The temperature dependence of the SANS exhibits a peak at Tc = 9.0 K and then a Q-dependent increase at low temperatures. This low temperature behavior contrasts sharply with that observed at low temperatures for a normal ferromagnet. No spin waves were observed within the ferromagnetic phase for the momenta values probed. Instead, a broad (FWHM ~ 5.0 meV) quasielastic distribution which was almost temperature independent was observed. This scattering was interpreted as a measure of the distribution of the magnetic energies of the Mn2+ ions.  相似文献   

8.
Crystal structure and magnetic properties of magnetostrictive compounds Tb0.36Dy0.64(Fe0.85Co0.15)2−xBx (0?x?0.15) have been investigated at room temperature. The matrix of these compounds keeps a cubic MgCu2-type structure. Lattice parameter a of the Laves phase decreases to reach a minimum at x=0.10, then increases with increasing boron content. Through analyzing the Mössbauer spectra, the easy magnetization direction (EMD) for all samples is confirmed to lie along 〈111〉 direction at room temperature, suggesting the presence of the giant magnetostriction. The mean hyperfine field Hhf and the deduced iron moment μFe increase with increasing boron content, resulting in the enhancement of both Curie temperature TC and spin reorientation temperature Tr. Although the addition of B enlarges the magnetocrystalline anisotropy constant K1, the composition dependence of the ratio λ/K1 for Tb0.36Dy0.64(Fe0.85Co0.15)2−xBx, however, reaches a maximum value at x=0. 05 under high magnetic fields.  相似文献   

9.
The electronic spectrum of a doped semiconductor described by the Anderson-Holstein impurity model and its conductivity derived from the Kubo linear response theory are calculated. Two characteristic temperatures depending on the doping level x are found in the phase diagram, T PG and T λ(x). The pseudogap that opens in the single-particle spectrum at low doping levels and temperatures closes at the lower one, T PG. The pseudogap state of an insulator is attributed to spin fluctuations in a doped compound. At the higher characteristic temperature T λ(x),, spin fluctuations vanish and the doped compound becomes a paramagnetic poor metal. Two distinct metal-insulator crossovers between semiconductor-like and metallic temperature dependence of resistivity are found. An insulator-to-poor-metal transition occurs at T *(x) ≈ T λ(x). A poor-metal-to-insulator transition at a lower temperature is attributed to the temperature dependence of density of states in the pseudogap. It is shown that both transitions are observed in La2?x SrxCUO4.  相似文献   

10.
We present measurements of the critical behaviour of the EPR linewidths at frequencies 9.21 and 35.5 GHz. In the exchange critical region above Tc (4πx ? 1) the strong field dependence of the linewidths is observed, even when the field variation of susceptibility x is small. This phenomenon is explained by the spin diffusion effect on the linewidth. The spin diffusion coefficients D for CdCr2Se4 and CdCr2S4 are determined from the linewidths data. The temperature dependence D is found to be consistent with the predictions of the dynamical scaling theory.  相似文献   

11.
The temperature dependence of the effective magnetic anisotropy constant K(T) of CoFe2O4 nanoparticles is obtained based on the SQUID magnetometry measurements and Mössbauer spectroscopy. The variation of the blocking temperature TB as a function of particle radius r is first determined by associating the particle size distribution and the anisotropy energy barrier distribution deduced from the hysteresis curve and the magnetization decay curve, respectively. Finally, the magnetic anisotropy constant at each temperature is calculated from the relation between r and TB. The resultant effective magnetic anisotropy constant K(T) decreases markedly with increasing temperature from 1.1×107 J/m3 at 5 K to 0.6×105 J/m3 at 280 K. The attempt time τ0 is also determined to be 6.1×10−12 s which together with the K(T) best explains the temperature dependence of superparamagnetic fraction in Mössbauer spectra.  相似文献   

12.
The magnetic, dielectric, and ferroelectric properties of Eu1 ? x Ho x MnO3 single crystals (0 < x ≤ 0.5), where magnetic ordering can be varied from the canted antiferromagnetic phase to modulated spin structures, have been studied. It has been found that a ferroelectric state appears at x ≥ 0.2 and low temperatures. As the temperature decreases and the holmium content increases, the electric polarization in this state is reoriented from the a axis to the c axis. It has been shown that the polarization is reoriented owing to a change in the spin rotation plane in the cycloidal phase from the ab to cb plane because of the stabilization of the latter upon an increase in the rare-earth contribution to the anisotropy energy. The T-x phase diagram of magnetic and ferroelectric states has been constructed.  相似文献   

13.
The onset of ferromagnetic order in TiBe2-xCux alloys, with x = 0.5, 0.4, 0.3, 0.2 and 0.15, has been examined using the technique of neutron small-angle scattering. The Curie temperature, Tc, for these alloys has been determined from the temperature dependence of the magnetic critical scattering. A linear extrapolation of Tc versus copper concentration yields a critical concentration for ferromagnetic order of xc = 0.05 ± 0.02. For the alloys with x = 0.4, 0.5 the lineshape of the magnetic critical scattering, at and above Tc, is well explained by the Ornstein-Zernicke form of the spin correlation function. For the lower concentration alloys the exact form of the spin correlation function is still unclear.  相似文献   

14.
Surface excitations in thin amorphous (Gd1?xCox)1?yMoy films obtained by the rf sputtering technique were studied. A microwave spectrometer at X-band was used for magnetic resonance investigation with external magnetic field rotating from perpendicular to parallel resonance orientations. The critical angle and angular dependence of the position of the surface mode and the uniform mode were determined. The Surface Inhomogeneity (SI) model was applied with symmetrical boundary conditions. The surface anisotropy energy term was assumed as a superposition of the uniaxial anisotropy term and a biaxial anisotropy term. The origin of the latter term is not known yet. We also performed the resonance experiment for different temperatures ranging from 180 to 300 K. From the experiment, the uniaxial surface anisotropy constant Ks1 and the biaxial surface anisotropy constant Ks2 were found as functions of the temperature; the uniaxial anisotropy energy against temperature changes the sign for y=0.02 from easy axis to easy plane while the biaxial surface anisotropy does not change its character.  相似文献   

15.
Electron spin resonance (ESR) study was carried out on La0.67Ca0.33Mn1−xFexO3 (x=0.0, 0.04) samples. The temperature dependence of the ESR spectra indicates the presence of phase separation above and below TC in x=0.0 and 0.04 sample, respectively. The increase of the g-value in the high-temperature region indicates the existence of local spin correlations even in the paramagnetic state. The activation energy obtained from both the temperature dependence of the ESR intensity and linewidth exhibits a smaller value in the Fe-doped sample. Our study suggests that the ferromagnetic spin correlations would be significantly weakened by a slight doping of Fe ions on Mn sites.  相似文献   

16.
In this paper we present a study of the magnetic anisotropy constant of nanocrystalline magnetic particles of CoxFe(3−x)O4, with x ranging from 0.05 to 1.6, synthesized by a combustion reaction. The magnetic anisotropy constants were obtained by fitting the high-field part of the major hysteresis loops with the law of approach equation down to temperatures of 4 K and up to fields of 60 kOe. The anisotropy constant depends strongly on both temperature and cobalt content x, exhibiting a nonmonotic dome-shaped dependence on x with a maximum at x=1.0. We found that fits at lower temperatures, i.e., 4 and 72 K, give values of K1 that are approximately one order of magnitude higher than those at higher temperatures, i.e., 272 and 340 K. For example, K1 for specimens with x=0.8 and 1.0 are 4.21×107 and 4.22×107 ergs/cm3 at 4 K, and 7.64×106 and 7.51×106 ergs/cm3 at 340 K, respectively. Thus, our determination of temperature-dependence of the anisotropy constant represents an improvement over existing works.  相似文献   

17.
Electrical conductivity and magnetoresistance of a series of monovalent (K) doped La1−xKxMnO3 polycrystalline pellets prepared by pyrophoric method have been reported. K doping increases the conductivity as well as the Curie temperature (TC) of the system. Curie temperature increases from 260 to 309 K with increasing K content. Above the metal-insulator transition temperature (T>TMI), the electrical resistivity is dominated by adiabatic polaronic model, while in the ferromagnetic region (50<T<TMI), the resistivity is governed by several electron scattering processes. Based on a scenario that the doped manganites consist of phase separated ferromagnetic metallic and paramagnetic insulating regions, all the features of the temperature variation of the resistivity between ∼50 and 300 K are described very well by a single expression. All the K doped samples clearly display the existence of strongly field dependent resistivity minimum close to ∼30 K. Charge carrier tunneling between antiferromagnetically coupled grains explains fairly well the resistivity minimum in monovalent (K) doped lanthanum manganites. Field dependence of magnetoresistance at various temperatures below TC is accounted fairly well by a phenomenological model based on spin polarized tunneling at the grain boundaries. The contributions from the intrinsic part arising from DE mechanism, as well as, the part originating from intergrannular spin polarized tunneling are also estimated.  相似文献   

18.
Structure, magnetic and transport properties of polycrystalline Bi0.6−xPrxCa0.4MnO3 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been studied. Systematic substitution of Pr at Bi site induces an interesting interplay between the charge ordering and antiferromagnetism. The charge ordering temperature (TCO) decreases with increasing x. The antiferromagnetic (AFM) ordering temperature (TN) increases sharply at both the extremes but remains nearly constant from x=0.2 to 0.4. At temperatures lower than TN a transition to the glassy state is observed. The nature of this glass like state appears to be controlled by the Pr content, and at lower values of x this is akin to a spin glass, while at higher x it has a characteristic of cluster glass. The Pr doping also leads to enhancement in the magnetic moment. In the present work it has been proposed that the local lattice distortion induced due to size mismatch between the A-site cations and 6s2 character of Bi3+ lone pair electron is responsible for the observed magnetic and electrical properties.  相似文献   

19.
The magnetic resonance spectrum of spin clusters formed in spin-Peierls magnets in the vicinity of impurity ions is investigated. The observed temperature dependences of the effective g-factor and the linewidth of the electron paramagnetic resonance (EPR) in crystals of Cu1?x NixGeO3 are described in the model of the exchange narrowing of the two-component spectrum with one component ascribed to spin clusters and exhibiting an anomalous value of the g-factor and the other related to triplet excitations. An estimation of the size of the suppressed dimerization region around the impurity ion is obtained (this region includes about 30 copper ions). The dependence of the effective g-factor and the EPR linewidth on the impurity concentration at low temperatures indicates the interaction of clusters.  相似文献   

20.
A diluted antiferromagnet Fe x Mg1–x TiO3 has been shown to behave as a spin glass (x=0.2) and a reentrant spin glass (x=0.3) near the Fe percolation concentrationx 0.25. In order to obtain microscopic information on these samples, we performed Mössbauer measurements. At considerably higher temperatures than the transition temperatures, magnetically broadened spectra appear superimposed upon the paramagnetic doublets. A remarkable feature is that the intensity of the magnetic spectra increases accompanying the decrease of their linewidth. This behavior can be ascribed to the gradual slow-down of fluctuations of the antiferromagnetic clusters formed at high temperatures. To investigate the temperature variations of the relaxation time of the clusters, we analyzed the Mössbauer spectra using the method formulated by Blume. It has been shown that becomes long with decreasing temperature and the rate of the slow-down of is hastened aroundT SG andT N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号