首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy, which demonstrates high values of thermal expansion coefficient (TEC) (15-21)×10−6 K−1 accompanied by almost temperature-insensitive behavior in temperature range of 122-525 K. Alloying with carbon considerably expanded the low temperature range of anti-Invar behavior in fcc Fe-Ni-based alloy. The Curie temperature of the alloy TC=195 K was determined on measurements of temperature dependences of magnetic susceptibility and saturation magnetization. The Mössbauer and small-angle neutron scattering (SANS) experiments on the fcc Fe-25.3%Ni-(0.73-0.78)%C alloys with the varying temperatures below and above the Curie point and in external magnetic field of 1.5-5 T were conducted. Low value of the Debye temperature ΘD=180 K was estimated using the temperature dependence of the integral intensity of Mössbauer spectra for specified temperature range. The inequality Beff=(0.7-0.9)Bext was obtained in external field Mössbauer measurement that points to antiferromagnetically coupled Fe atoms, which have a tendency to align their spins perpendicular to Bext. Nano length scale magnetic inhomogeneities nearby and far above TC were revealed, which assumed that it is caused by mixed antiferromagnetically and ferromagnetically coupled Fe atom spins. The anti-Invar behavior of Fe-Ni-C alloy is explained in terms of evolution of magnetic order with changing temperature resulting from thermally varied interspin interaction and decreasing stiffness of interatomic bond.  相似文献   

2.
CoFeRhO4 has been studied by Mössbauer spectroscopy and X-ray diffraction. The crystal is found to have a cubic spinel structure with the lattice constant a0=8.451±0.005 Å. The iron ions are in ferric states. The temperature dependence of the magnetic hyperfine field is analyzed by the Néel theory of ferrimagnetism. The intersublattice superexchange interaction is antiferromagnetic and strong with a strength of JAB=−12.39kB while the intrasublattice superexchange interactions are weak with strengths of JAA=−4.96kB and JBB=6.20kB. As the temperature increases toward the Néel temperature TN, a systematic line broadening effect in the Mössbauer spectrum is observed and interpreted to originate from different temperature dependences of the magnetic hyperfine fields at various iron sites.  相似文献   

3.
High-resolution electron microscopy (HREM) reveals in the as-quenched Fe90Zr7B3 alloy the existence of medium range ordered (MRO) regions 1-2 nm in size. Transmission Mössbauer spectroscopy confirms that these regions are α-Fe MRO ones. Above the Curie point of the amorphous phase (TC=(257±2)K) they behave like non-interacting superparamagnetic particles with the magnetization decreasing linearly with the temperature. For these particles the average magnetic moment of 390μB and the average size of 1.7 nm, in excellent agreement with HREM observations, were estimated. The maximum of the isothermal magnetic entropy change at the maximum magnetizing field induction of 2 T occurs at the Curie temperature of the amorphous phase and equals to 1.05 Jkg−1 K−1. The magnetic entropy changes exhibit the linear dependence on the maximum magnetizing field induction in the range 0.5-2 T below, near and above TC. Such correlations are attributed to superparamagnetic behavior of α-Fe MRO regions.  相似文献   

4.
Considering certain interesting features in the previously reported 166Er Mössbauer effect, and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in the ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8–300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in features due to magnetic ordering in the plot of magnetic susceptibility χ versus temperature T at low temperatures. The χ(T) data reveal that there is a pseudo-low-dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic order setting in at a lower temperature (3.8 K). A new finding in the χ(T) data is that, for H∥〈1 1 0〉 but not for H∥〈0 0 1〉, there is a broad shoulder in the range 8–20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Mössbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal the complex nature of magnetism of this compound.  相似文献   

5.
The SQUID and the 57Fe Mössbauer spectroscopy studies of the magnetic properties of monomeric and dimeric forms of iron porphyrin were performed between 2 and 305 K. The effective magnetic relaxation rate of the Fe atoms in iron porphyrin monomers exhibits complex temperature dependence, resulting from the competing spin-spin and spin-lattice relaxation processes. The dimerization of iron porphyrin dramatically speeds up the magnetic relaxation. The Fe-Fe antiferromagnetic exchange coupling constant in Fe-O-Fe dimer is J≈−110 cm−1. The complementary application of SQUID and the Mössbauer spectroscopy is proposed as a new precise quantitative analytical methodology for monitoring of the aggregation process of iron porphyrin.  相似文献   

6.
Thermo-gravimetric, differential scanning calorimetry and comprehensive 57Fe Mössbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co0.2Fe0.8)72.5Si12.5B15 micro-wires have been recorded. The Curie temperature of the amorphous phase is TC(amorp) ∼730 K. The analysis of the Mössbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Mössbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe2B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe2B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating.  相似文献   

7.
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided.  相似文献   

8.
Magnetic properties of the group II–V semiconductor CdSb single crystals doped with Ni (2 at%) are investigated. Deviation of the zero-field-cooled susceptibility, χZFC, from the field-cooled susceptibility is observed below 300 K, along with a broad maximum of χZFC (T) at Tb in fields below the anisotropy field BK∼4 kG. Tb(B) obeys the law [Tb(B)/Tb(0)]1/2=1–B/BK with Tb(0)∼100 K. The magnetization exhibits saturation above ∼20–30 kG, a weak temperature dependence and anisotropy of the saturation value Ms. The coercive field is much smaller then BK and displays anisotropy inverted with respect to that of Ms. Such magnetic behavior is expected for spheroidal Ni-rich Ni1−xSbx nanoparticles with high aspect ratio, broad distribution of the sizes and with orientations of the major axis distributed around a preferred direction.  相似文献   

9.
Fe3O4 nanowire arrays with different diameters of D=50, 100, 150 and 200 nm were prepared in anodic aluminum oxide (AAO) templates by an electrodeposition method followed by heat-treating processes. A vibrating sample magnetometer (VSM) and a Quantum Design SQUID MPMS magnetometer were used to investigate the magnetic properties. At room temperature the nanowire arrays change from superparamagnetism to ferromagnetism as the diameter increases from 50 to 200 nm. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements show that the blocking temperature TB increases with the diameter of nanowire. The ZFC curves of D=50 nm nanowire arrays under different applied fields (H) were measured and a power relationship between TB and H were found. The temperature dependence of coercivity below TB was also investigated. Mössbauer spectra and micromagnetic simulation were used to study the micro-magnetic structure of nanowire arrays and the static distribution of magnetic moments of D=200 nm nanowire arrays was investigated. The unique magnetic behaviors were interpreted by the competition of the demagnetization energy of quasi-one-dimensional nanostructures and the magnetocrystalline anisotropy energy of particles in nanowires.  相似文献   

10.
Crystal structure and magnetic properties of magnetostrictive compounds Tb0.36Dy0.64(Fe0.85Co0.15)2−xBx (0?x?0.15) have been investigated at room temperature. The matrix of these compounds keeps a cubic MgCu2-type structure. Lattice parameter a of the Laves phase decreases to reach a minimum at x=0.10, then increases with increasing boron content. Through analyzing the Mössbauer spectra, the easy magnetization direction (EMD) for all samples is confirmed to lie along 〈111〉 direction at room temperature, suggesting the presence of the giant magnetostriction. The mean hyperfine field Hhf and the deduced iron moment μFe increase with increasing boron content, resulting in the enhancement of both Curie temperature TC and spin reorientation temperature Tr. Although the addition of B enlarges the magnetocrystalline anisotropy constant K1, the composition dependence of the ratio λ/K1 for Tb0.36Dy0.64(Fe0.85Co0.15)2−xBx, however, reaches a maximum value at x=0. 05 under high magnetic fields.  相似文献   

11.
Magnetic properties of four sigma-phase Fe100−xVx samples with 34.4?x?55.1 were investigated by Mössbauer spectroscopy and magnetic measurements in the temperature interval 4.2-300 K. Four magnetic quantities, viz. hyperfine field, Curie temperature, magnetic moment and susceptibility, were determined. The sample containing 34.4 at% V was revealed to exhibit the largest values found up to now for the sigma-phase for average hyperfine field, 〈B〉=12.1 T, average magnetic moment per Fe atom, 〈μ〉=0.89 μB, and Curie temperature, TC=315.3 K. The quantities were shown to be strongly correlated with each other. In particular, TC is linearly correlated with 〈μ〉 with a slope of 406.5 K/μB, as well as 〈B〉 is so correlated with 〈μ〉, yielding 14.3 T/μB for the hyperfine coupling constant.  相似文献   

12.
《Current Applied Physics》2018,18(2):141-149
Ultrasmall iron oxide (USPIO) nanoparticles, with diameter mostly less than 3 nm dispersed in an organic carrier fluid were synthesized by polyol route. The evolution of ZFC-FC magnetization curves with temperature, as well as the shift of the ac susceptibility peaks upon changing the frequency, reveal that the nanoparticles in the fluid are non-interacting and superparamagnetic with the blocking temperature TB ∼10 K. The Mössbauer spectra analysis proposed the core/shell structure of the nanoparticles consisting of stoichiometric γ-Fe2O3 core and non-stoichiometric shell. The nanoparticle surface layer has a great influence on their properties which is principally manifested in significant reduction of the magnetization and in a large increase in magnetic anisotropy. Magnetic moments do not saturate in fields up to 5 T, even at the lowest measured temperature, T = 5 K. The average magnetic particle diameter is changed from 1.3 to 1.8 nm with increasing magnetic field from 0 to 5 T which is noticeably smaller than the particle sizes measured by TEM. The estimated effective magnetic anisotropy constant value, Keff = 2 × 105 J/m3, is two orders of magnitude higher than in the bulk maghemite. Measurements of the longitudinal and transverse NMR relaxivity parameters on water diluted nanoparticle dispersions at 1.5 T gave the values r1 = 0.028 mmol−1 s−1, r2 = 0.050 mmol−1 s−1 and their ratio r2/r1 = 1.8. Continuous increase of the T1-weighted MRI signal intensity with increasing Fe concentration in the nanoparticle dispersions was observed which makes this ferrofluid to behave as a positive T1 contrast agent.  相似文献   

13.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

14.
In this paper we present a study of the magnetic anisotropy constant of nanocrystalline magnetic particles of CoxFe(3−x)O4, with x ranging from 0.05 to 1.6, synthesized by a combustion reaction. The magnetic anisotropy constants were obtained by fitting the high-field part of the major hysteresis loops with the law of approach equation down to temperatures of 4 K and up to fields of 60 kOe. The anisotropy constant depends strongly on both temperature and cobalt content x, exhibiting a nonmonotic dome-shaped dependence on x with a maximum at x=1.0. We found that fits at lower temperatures, i.e., 4 and 72 K, give values of K1 that are approximately one order of magnitude higher than those at higher temperatures, i.e., 272 and 340 K. For example, K1 for specimens with x=0.8 and 1.0 are 4.21×107 and 4.22×107 ergs/cm3 at 4 K, and 7.64×106 and 7.51×106 ergs/cm3 at 340 K, respectively. Thus, our determination of temperature-dependence of the anisotropy constant represents an improvement over existing works.  相似文献   

15.
The magnetic properties of Nd4.5Fe77−xMnxB18.5 (x=0, 1 and 2) nanocomposites prepared by the crystallization of amorphous precursors were investigated. Addition of Mn is found to decrease the crystallization temperature of the amorphous ribbons. The intrinsic coercivity iHc and maximum energy product (BH)max increase from 2.6 kOe and 9.1 MGOe for x=0 to 3.1 kOe and 10.3 MGOe for x=1, respectively, and the remanence ratio Mr/Ms increases from 0.70 to 0.72. The effect of Mn on Curie temperature TC and the thermal stability of Mr and iHc were also studied. 57Fe Mössbauer spectra have been recorded for x=0, 1 and 2 ribbons at room temperature and site preference of the Mn atoms in Fe3B and Nd2Fe14B phases is discussed using the Mössbauer spectroscopy.  相似文献   

16.
The temperature and composition dependence of magnetic properties of Co–Cr co-substituted magnesium ferrite, Mg1−xCoxCrxFe2−xO4 (x=0.0–0.5), prepared by novel polyethylene glycol assisted microemulsion method, are studied. The synthesized materials are characterized by the Mössbauer spectrometer and standard magnetic measurements. Major hysteresis loops are measured up to the magnetic field of 50 kOe at 300, 200 and 100 K. The high field regimes of these loops are modeled using the Law of Approach to saturation to determine the first-order cubic anisotropy coefficient and saturation magnetization. Both the saturation magnetization and the anisotropy coefficient are observed to increase with the decrease in temperature for all Co–Cr co-substitution levels. Also, both the saturation magnetization and the anisotropy coefficient achieved maximum value at x=0.3 and x=0.2, respectively. Explanation of the observed behavior is proposed in terms of the site occupancy of the co-substituent, Co2+ and Cr3+ in the cubic spinel lattice.  相似文献   

17.
NANOPERM-type FeMoCuB alloys are studied using magnetic and Mössbauer measurements in the as-prepared amorphous state. It is shown that the Fe76Mo8Cu1B15 (A) and Fe74Mo8Cu1B17 (B) alloys exhibit the magnetic dipole and electrical quadrupole interactions well detected in the room-temperature Mössbauer spectra. The thermomagnetic measurements above the room temperature indicate a vanishing of the magnetic interactions at approximately 310 K (A) and at 340 K (B), respectively. The low-temperature DC magnetic measurements show an anomaly around 200 K which is also a boundary at which zero-field Mössbauer measurements of both samples reflect the gradual “vanishing” of the electrical quadrupole interactions and appearance of another magnetically ordered component. The Mössbauer measurements in the field of 4 MA/m yield a survival of quadrupole and an enhancement of magnetic dipole interactions.  相似文献   

18.
We studied by Mössbauer spectroscopy the Na0.82CoO2 compound using 1% 57Fe as a local probe which substitutes for the Co ions. Mössbauer spectra at T=300 K revealed two sites which correspond to Fe3+ and Fe4+. The existence of two distinct values of the quadrupole splitting instead of a continuous distribution should be related with the charge ordering of Co+3, Co+4 ions and ion ordering of Na(1) and Na(2). Below T=10 K part of the spectrum area, corresponding to Fe4+ and all of Fe3+, displays broad magnetically split spectra arising either from short-range magnetic correlations or from slow electronic spin relaxation.  相似文献   

19.
This study deals with the temperature and composition dependence of magnetization and magnetic anisotropy of Cu2+-Cr3+ co-substituted magnesium ferrite, Mg1−xCuxCrxFe2−xO4 (x=0.0-0.5). The synthesized materials are characterized using thermo gravimetric analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray fluorescence, Mössbauer spectrometer, superconducting quantum interference device magnetometer and vibrating sample magnetometer. The M-H loops measured up to 50 kOe at 300, 200 and 100 K, revealed narrow hysteresis curves with a coercive field and saturation magnetization varying for different compositions. The high field regimes of these loops are modeled using the Law of Approach to saturation to extract anisotropy information and saturation magnetization. Both the saturation magnetization and the anisotropy constant are observed to increase with the decrease in temperature while decrease with the Cu-Cr co-substituents for all the samples. Explanation of the observed behavior is proposed in terms of the preference of the co-substituent ions of Cu2+ and Cr3+ and their predominant choice to substitute into the octahedral sites of the cubic spinel lattice.  相似文献   

20.
Magnetoresistance (MR) of oriented single crystals of the anisotropic semiconductor p-CdSb doped with 2 at% of Ni is investigated between T=1.5 and 300 K in transversal pulsed magnetic fields up to B=30 T. In fields B∼4-15 T at T below 4.2 K, the resistivity obeys the law ln ρη[B?(B)]1/2 with ?(B)=a(0)/a(B), where a is the carrier localization radius and parameter η depends on a(0), on the acceptor concentration NA and on the direction of the magnetic field with respect to the crystallographic axes, but does not depend on T. Such behavior gives evidence for MR realized by hopping charge transfer over the nearest-neighbor sites in strong magnetic field. The analysis of the experimental data yields the values of η, agreeing with calculated ones within an error of 10%, taking into account the effects of the anisotropy of the acceptor states and of the explicit dependence of a(B) due to the increase in the activation energy of shallow acceptors in magnetic field and the sensitivity of the metal-insulator transition to B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号