首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用双层流延法制备Ni-ScSZ阳极支撑层-ScSZ电解质复合膜.在烧结的Ni-ScSZ阳极支撑层表面丝网印刷一层LSCM-CeO2阳极催化层,得到LSCM-CeO2/Ni-ScSZ功能梯度层阳极.研究表明,LSCM/CeO2比为1:3(bymass)的功能梯度层阳极Ni-ScSZ13具有较佳的性能.单电池在850℃以H2和乙醇蒸气作燃料的最大功率密度分别为710和669mW/cm2,而LSCM/CeO2为1:0(bymass)的功能梯度层Ni-ScSZ10作阳极的单电池,最大功率密度分别为521和486m W/cm2.两种阳极单电池,分别在700℃于乙醇蒸气中作长时间运行实验,X-射线能量散射分析表明Ni-ScSZ13阳极比Ni-ScSZ10阳极具有较好的抗碳沉积性能.  相似文献   

2.
应用双层流延法制备Ni-ScSZ阳极支撑体-ScSZ电解质复合膜素坯,经共烧结得到复合膜.以硝酸铈和硝酸钆为原料,柠檬酸作燃料,由燃烧合成法制备Gd0.2Ce0.8O2(GDC)包覆的Ni-ScSZ阳极.X-射线衍射(XRD)和电子显微镜(TEM和SEM)分析显示,Ni-ScSZ阳极颗粒表面的包覆层是由直径小于100 nm的GDC微粒构成,并与Ni-ScSZ阳极颗粒紧密烧结在一起.实验表明,2.0%(by mass)GDC包覆的Ni-ScSZ阳极具有较佳的性能,以其组装的单电池在850℃用H2或CH4作燃料的最大功率密度分别是825和848 mW/cm2,而由无包覆的Ni-ScSZ作阳极的单电池,功率密度分别是584和586 mW/cm2.由两种阳极材料组装的单电池,分别在700℃于CH4气氛下作长时间发电实验,发现2.0%(by mass)GDC包覆的Ni-ScSZ阳极比Ni-ScSZ阳极具有较好的抗碳沉积性能.  相似文献   

3.
谭力盛  潘婧  李瑶  庄林  陆君涛 《电化学》2013,19(3):199-203
本文报道H2-O2型碱性聚合物电解质燃料电池(APEFC)电极疏水性对放电性能的影响. 以季铵化聚砜(QAPS)或自交联型季铵化聚砜(xQAPS)碱性聚电解质(APE)作为隔膜和电极中的电解质(Ionomer)、聚四氟乙烯(PTFE)作为疏水添加剂调控催化层疏水性. 结果表明,阳极催化层疏水性的增强有利于提升电池放电性能,而阴极催化层疏水性适中时电池性能最优. 采用疏水性较强的xQAPS作为电解质并在阳极催化层中添加适量PTFE疏水剂,在60 oC和100%相对湿度的条件下,280 mA·cm-2电流密度时,电池最高功率密度达132 mW·cm-2.  相似文献   

4.
利用差示扫描量热仪(DSC)、电化学工作站、BTS电池测试系统、X-射线衍射仪(XRD)、扫描电子显微镜(SEM)和X射线能量色散谱(EDS)等方法,研究了含离子液体N-甲基丁基吡咯烷二(三氟甲基磺酰)亚胺盐(PyR14TFSI)电解液性能以及LiMn2O4电极高温电化学性能. 结果表明,随着1 mol·L-1 LiPF6 EC/EMC/DMC(1:1:1,by volume)中PyR14TFSI添加量的增大,电解液的电导率逐渐增大,添加量为2.5%(by mass)时,电解液DSC曲线由89.3 oC、201 oC、224 oC三个强吸热峰变为116.6 oC和244.3 oC两个强吸热峰;50 oC下,LiMn2O4倍率性能显著提高,2C放电比容量提高16 mAh·g-1,100循环周期后容量保持率为88.3%(提高2.2%). PyR14TFSI添加有利于电极结构的稳定.  相似文献   

5.
为考察乙醇用于固体氧化物燃料电池的可行性,用柠檬酸溶胶 凝胶制备阳极催化材料Ni-ZnO-ZrO2,利用机械混合法制备Ni-ZnO-ZrO2-YSZ(Y2O3稳定的ZrO2)阳极。用涂覆法,在YSZ电解质上,制备了Ni-ZnO-ZrO2-YSZ/YSZ/LSM(La0.85Sr0.15MnO3)与Ni-YSZ/YSZ/LSM的单体电池。在不同蒸发器操作温度、电池操作温度和乙醇蒸气流量下,以乙醇为燃料进行发电实验,对两种阳极的电池发电性能进行比较。实验结束后,用SEM检测了两种电池阳极的表面。结果表明,Ni-ZnO-ZrO2-YSZ阳极SOFC的电池输出性能明显高于Ni-YSZ阳极,且Ni-ZnO-ZrO2-YSZ阳极具有较好的抗积炭能力。  相似文献   

6.
采用固相反应法合成A缺位的(La0.8Sr0.2)0.95MnO3(LSM95)作为阴极材料,Zr0.9Sc0.1SO1.95(SSZ)商业粉体作为电解质材料,溶胶-凝胶法合成的La0.8Sr0.2Cr0.5Mn0.5O3-(LSCrM)作为阳极电催化材料,利用流延、共烧结及浸渍法得到结构为LSCrM-CeO2|SSZ|3YSZ-LSM95的阴极支撑型固体氧化物燃料电池,分别在氢气气氛和甲烷气氛中进行电化学性能测试. 结果表明,浸渍0.11 g·cm -2 CeO2的LSCrM-CeO2|SSZ|3YSZ-LSM95单电池在以CH4为燃料时,600、650、700、750和800 oC下的功率密度分别为1.68、4.70、12.40、28.08和54.78 mW·cm -2,表现出一定的电化学性能和较好的稳定性.  相似文献   

7.
在LiNi1/3Co1/3Mn1/3O2正极材料表面包覆ZnO,通过X射线衍射(XRD)和光电子能谱(XPS)分析包覆层对正极材料表面状态的改变,并考察了改性后材料的放电容量、首次不可逆容量等电化学性能变化. 结果表明:ZnO主要存在于材料表面并影响着材料表面组成和电化学性质,材料表面镍和锰的含量随着包覆量的增加而增大;400 oC热处理可使过渡金属与锌在材料表面形成复合氧化物,过渡金属的结合能增大;包覆2%(by mass,下同)的ZnO可有效抑制55 oC下充放电时3.6 V附近的不可逆反应,提高了材料的首次库仑效率;包覆2% ZnO的电池材料在55 oC/0.5C的放电比容量和循环寿命最佳.  相似文献   

8.
近年来关于锂离子电池造成的安全问题甚至事故的报道屡见不鲜,锂离子电池的安全问题已经成为人们关注的焦点. 我们用四丁基六氟磷酸铵(TBAPF6)作为锂离子电池电解液阻燃添加剂,研究发现添加了TBAPF6的电解液具有明显的阻燃效果,同时电解液电导率下降并不明显. LiCoO2/Graphite全电池在添加了TBAPF6的电解液中可逆容量会略有降低,但具有更优异的循环稳定性. 主要是由于TBAPF6添加量的增加会影响石墨电极的库伦效率,延长活化时间. 通过对LiCoO2/Graphite全电池绝热加速量热仪(ARC)测试,表明添加TBAPF6对电池的燃烧有明显的抑制作用. 在TBAPF6添加量至5%时,电池在300 oC内自放热速率不超过0.1oC/min,电池的安全性显著提高.  相似文献   

9.
为提高聚苯并咪唑(PBI)膜的抗氧化性能,以乙烯苄基氯(PVBC)作为PBI的大分子交联剂,并利用1H-1,2,4-三氮唑取代交联剂中的不稳定端基Cl,制备了交联型高温质子交换膜,考察了交联剂用量对膜的电化学性质的影响. 研究表明,膜中的交联结构有效提高了膜的抗氧化性能,并兼具优异的电导率及力学性能. 采用无增湿H2和O2对膜电极性能进行了测试,150 oC下电池最大功率密度达到0.82 W•cm-2.  相似文献   

10.
佟泽  尹屹梅  殷洁炜  马紫峰 《电化学》2013,19(3):210-214
制备了一种适用于中温固体氧化物燃料电池的新型两相复合电解质钐掺杂二氧化铈SDC-(Li/Na)2SO4. 使用XRD和SEM表征该复合电解质的物相结构和观察电解质片的截面形貌,交流阻抗法测量其400 oC ~ 700 oC的电导率. 结果表明,SDC-(Li/Na)2SO4由结晶相SDC和无定形相(Li/Na)2SO4组成. 在中温范围(500 oC ~ 700 oC)该复合电解质电导率比SDC显著增大并随温度升高呈三段变化:T<500 oC,表观离子传导活化能为1.28 eV;500 oC ~ 550 oC第二相硫酸盐融化,电导率激增;T≥550 oC,电导率又缓慢增加,活化能降为0.30 eV,与SDC和文献报道的SDC-(Li/Na)2CO3相比,其电导率均显著提高,如550 oC时SDC-(Li/Na)2SO4的电导率可达0.217 S·cm-1,分别为SDC和SDC-(Li/Na)2CO3的25倍和3.2倍. 硫酸盐的熔融改变了离子在电解质中的传导机制,显著提高了SDC-(Li/Na)2SO4复合电解质的中温电导率.  相似文献   

11.
本文主要研究在含有0.05 mol·L-1硝酸铈、0.1 mol·L-1乙酸铵和70%(体积比)乙醇的镀液中通过阳极电沉积法在316 L不锈钢电极表面上制备CeO2薄膜,并讨论了三种单色光波长以及镀液中溶解氧对阳极沉积CeO2的影响. 采用计时安培曲线、椭圆偏振光谱、扫描电子显微镜、掠角X射线衍射和拉曼光谱方法研究了薄膜的电镀行为、表面形貌及其结构. 结果表明,本研究中的有效光照射波长为365 nm和254 nm,415 nm的波长不足以将电子从导带激发到价带. 随着入射光波长从254 nm增加到415 nm,薄膜的厚度与结晶度均逐渐减小,波长的变化对CeO2薄膜表面形貌的影响很小. 少量的氧气对光助阳极沉积CeO2薄膜有积极作用,但会生成较多的铈的氧化物颗粒吸附在电极表面. 在光电化学系统中,O2常用作电子捕获剂. 随着溶解氧含量的增加,O2将捕获对沉积有积极作用的光生电子,进而抑制阳极沉积的反应速率.  相似文献   

12.
采用静电纺丝技术制备了碳纤维基纳米Pt-SnO2阳极催化剂(Pt/Sn原子比为3)。通过X射线衍射(XRD)、红外光谱(FT-IR)、扫描电子显微镜(SEM)等技术对该催化剂进行了表征,并采用循环伏安法对其在乙醇燃料电池中的阳极催化活性进行了评价。结果表明,纳米Pt-SnO2催化剂均匀地分散在碳纤维骨架上;随着烧结温度的升高,碳纤维载体的致密度越高、导电性能越好。电催化性能测试表明,烧结温度为800℃时催化剂的峰电流密度最大,达到0.11 A/cm2,抗中毒能力也最强。单电池的发电性能表明,在一定的乙醇浓度下,1.0 mL/min进样流速具有最优的发电效率。  相似文献   

13.
碳纤维基PtSn催化剂直接乙醇燃料电池制备及性能研究   总被引:1,自引:1,他引:0  
采用自制的碳纤维基PtSn催化剂薄膜作为阳极催化剂,商用Pt/C作为阴极催化剂,Nafion 115膜作为质子交换膜,通过热压制成膜电极,组装平板型直接乙醇燃料单电池,搭建测试系统并进行性能的测试,研究了温度、乙醇浓度、溶液流量、进气流量等参数对DEFC的影响。结果表明,当乙醇溶液浓度为1.0 mol/L、溶液进样流量为1.0 mL/min、溶液温度为80 ℃、氧气进样流量为100 mL/min时结果较优,单电池的最高功率密度达18.2 mW/cm2。  相似文献   

14.
固体氧化物直接碳燃料电池阳极反应过程分析   总被引:1,自引:0,他引:1  
以氧化钇稳定的氧化锆(YSZ)为电解质组装成直接碳燃料电池(DCFC),分别以活性炭(AC)、石墨(G)、神府半焦(SC)作为DCFC燃料,研究了碳燃料的特性、电池操作温度以及阳极反应气氛等对DCFC阳极反应过程的影响。结果表明,三种碳燃料在空气、CO2气氛中氧化反应活性顺序为AC > SC > G,当三种碳材料作为DCFC燃料时,活性炭作为燃料的DCFC性能最好,半焦燃料次之,石墨作为燃料的DCFC性能最差,而且燃料反应活性与其表面含氧官能团、孔隙结构有关;DCFC的阳极反应过程存在碳燃料直接氧化为CO2、CO2与C反应转化为CO,以及CO氧化为CO2等。  相似文献   

15.
采用不同质量分数的NH_4NO_3和(NH_4)_2S_2O_8溶液作为电解液,对双室微生物燃料电池的阳极炭布进行改性。以餐厨废水作为阳极底物,以K_3[Fe(CN)_6]和NaCl混合溶液为阴极液,考察不同电解液改性阳极条件下微生物燃料电池的产电性能及污水处理效果。结果表明,采用NH_4NO_3或(NH_4)_2S_2O_8改性炭布作为阳极的微生物燃料电池的发电性能和水处理效果均有改善。其中,采用质量分数为4%的(NH_4)_2S_2O_8溶液作为阳极改性电解液时,微生物燃料电池系统的产电性能达到最佳,其稳态电流密度约为60 m A/m~2,COD去除率约为42.5%。  相似文献   

16.
The continuous consumption and excessive use of fossil fuels promote the exploration of new energy conversion technologies. Meanwhile, the increase in the supply of ethane encourages the development of industrial technology for the production of ethylene chemical raw materials. Compared with traditional fossil fuel energy conversion equipment, solid oxide ethane cogeneration fuel cells are an efficient energy processing device. Through selective oxidation of fuel gas on the anode, the endothermic process of ethane dehydrogenation is converted into an exothermic oxidation reaction, which has a greater driving force for reaction thermodynamics, and simultaneously produces clean electricity and value-added chemicals without CO2 emissions. The anode material used for the proton conductor ethane fuel cells needs to operate stably and efficiently under hydrocarbon fuel. Consequently, excellent catalytic activity, low polarization resistance, and anti-coking stability are essential. In this work, CeO2 was uniformly impregnated into the surface of the porous cubic perovskite Pr0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ anode by wet impregnation, and then calcined and reduced to obtain a CeO2/RP-PSCFM@CoFe composite anode embedded with nanoparticles, which was successfully used in electrolyte-supported proton conductor fuel cells. CeO2 has a high ionic conductivity and transport capacity, which accelerates the transfer rate of protons on the anode and improves the catalytic reaction and transport process. Moreover, uniformly dispersed CeO2 can effectively increase the three-phase interface of the anode reaction and increase the range of reaction activity. The peak power densities before and after wet impregnation reached 172 and 253 mW·cm−2, respectively, at 750 ℃. When switching to ethane as the fuel, the peak power densities reached 136 and 183 mW·cm−2, respectively. The polarization resistance of the impregnated single cell was significantly reduced, and the catalytic activity improved. Moreover, there was no attenuation for 10 h in the long-term test. Inversely, the current density increased with the continuous reduction of the composite anode. Product analysis revealed that the yield of ethylene increased from 23.52% at 650 ℃ to 34.09% at 750 ℃, and the ethylene selectivity exceeded 94%. These results clearly show that the impregnated anode exhibited excellent catalytic activity and anti-coking ability in hydrocarbon fuels at high temperatures. Combining CoFe nanoparticles with CeO2 enhanced the electronic conductance and ionic conductance of the electrode, improved the transmission of electric energy and the efficient conversion of chemicals, thus successfully producing the cogeneration of electric energy and ethylene.  相似文献   

17.
采用溶胶凝胶法制备CNT@TiO_2载体,利用电沉积法制备用于直接甲醇燃料电池的PtCo-CNT@TiO_2阳极催化剂。采用透射电子显微镜(TEM)、X射线衍射(XRD)和电化学工作站对其进行表征。结果表明,PtCo-CNT@TiO_2复合纳米材料有明显的结晶,且金属粒子围绕在TiO_2包覆的碳纳米管的周围,用于直接甲醇燃料电池阳极催化剂具有较高的活性与稳定性。该PtCo-CNT@TiO_2催化剂的电化学比表面积为164 m~2/g,65℃时甲醇的氧化峰电流达到45 mA/cm~2,计时电流曲线表明300 s后PtCo-CNT@TiO_2的氧化电流趋于24 mA/cm~2,在碱性条件下甲醇的氧化峰电流为39.7 mA/cm~2。  相似文献   

18.
为在固体氧化物燃料电池中有效利用干甲烷为燃料,需制作多孔立体阳极。采用硬模板法和浸渍法制备Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x包覆管状SDC阳极材料(Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x/SDC),为作对比,用溶胶凝胶法制备粉末状Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x,机械混合SDC粉末制备Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x-SDC。将这两种阳极材料分别制作电解质支撑的单电池Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x/SDC|YSZ|LSMYSZ与Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x-SDC|YSZ|LSM-YSZ,并进行发电性能测试以及长期稳定性实验。结果表明,800℃下,干甲烷环境中,Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x-SDC为阳极的单电池最大功率密度为324.99 m W/cm2,运行10 h后,电压下降5.60%;而以Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x/SDC为阳极的单电池最大功率密度达到384.54 m W/cm2,运行100 h后,电压未严重衰减。实验后阳极的SEM照片表明,Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x-SDC阳极内孔隙狭小,易被积炭堵塞;而Ni_(0.5)Cu_(0.5)Ba_(0.05)O_x/SDC阳极呈立体多孔结构,有利于燃料气体与反应后气体的扩散。催化剂颗粒均匀地包覆在SDC纤维管表面,有利于增加三相界面,提高电池的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号