首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
原子级厚度的单层或者少层二维过渡金属硫族化合物因其独特的物理特性而被寄希望成为下一代光电子器件的重要组成部分。然而,二维材料的缺陷在很大程度上影响着材料的性质。一方面,缺陷的存在降低了材料的荧光量子效率、载流子迁移率等重要参数,影响了器件的性能。另一方面,合理地调控和利用缺陷催生了单光子源等新的应用,因此,表征、理解、处理和调控二维材料中的缺陷至关重要。本文综述了二维过渡金属硫族化合物中的缺陷以及缺陷相关的载流子动力学研究进展,旨在梳理二维材料中的缺陷及其超快动力学与材料性能之间的关系,为二维过渡金属硫族化合物材料特性和高性能光电子器件的相关研究提供支持。  相似文献   

2.
Ternary transition metal chalcogenides (TTMCs) have attracted interest due to the discovery of their Weyl semimetallic property and the recent synthesis of layered TTMCs which are regarded as potential candidates for two-dimensional (2D) topological insulators. Here, employing first-principles calculations, we predicted the emergence of non-trivial band topologies in the monolayer MM'X4 family (M= V, Nb, or Ta; M' = Co, Rh, or Ir; and X = Se or Te) within hybrid functional calculations. Five of eighteen 2D materials were found to be topological insulators, while four of them are magnetic thin films. The nontrivial topologies were verified via the calculated Z2 topological invariant and topologically protected edge states. Further calculations showed a strain-induced phase transition in VCoTe4 from a magnetic phase to a nonmagnetic topological insulating phase. Our comprehensive study revealed a diverse family of monolayer ternary transition metal chalcogenides adding new members to the current catalog of 2D topological insulators and 2D magnetic materials.  相似文献   

3.
Teng Ma 《中国物理 B》2021,30(10):108103-108103
In recent years, transition metal borides (TMBs) have attracted much attention because they are considered as potential superhard materials and have more abundant crystal structures compared with traditional superhard materials. So far, however, no superhard materials have been found in TMBs. A large number of structures and potential new properties in TMBs are induced by the various hybridization ways of boron atoms and the high valence electrons of transition metals, which provide many possibilities for its application. And most TMBs have layered structures, which make TMBs have the potential to be a two-dimensional (2D) material. The 2D materials have novel properties, but the research on 2D TMBs is still nearly blank. In this paper, the research progress of TMBs is summarized involving structure, mechanical properties, and multifunctional properties. The strong covalent bonds of boron atoms in TMBs can form one-dimensional, two-dimensional, and three-dimensional substructures, and the multiple electron transfer between transition metal and boron leads to a variety of chemical bonds in TMBs, which are the keys to obtain high hardness and multifunctional properties of TMBs. Further research on the multifunctional properties of TMBs, such as superconductors, catalysts, and high hardness ferromagnetic materials, is of great significance to the discovery of new multifunctional hard materials.  相似文献   

4.
The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades.Various MX2-type transition metal dichalcogenides,such as WTe2,Ir Te2,and Mo S2,have triggered great attention recently,either for the discovery of novel phenomena or some extreme or exotic physical properties,or for their potential applications.Pd Te2 is a superconductor in the class of transition metal dichalcogenides,and superconductivity is enhanced in its Cuintercalated form,Cu0.05 Pd Te2.It is important to study the electronic structures of Pd Te2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mechanism.Here we report systematic high resolution angle-resolved photoemission(ARPES) studies on Pd Te2 and Cu0.05 Pd Te2single crystals,combined with the band structure calculations.We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds.By carefully examining the electronic structures of the two systems,we find that Cu-intercalation in Pd Te2 results in electron-doping,which causes the band structure to shift downwards by nearly 16 me V in Cu0.05 Pd Te2.Our results lay a foundation for further exploration and investigation on Pd Te2 and related superconductors.  相似文献   

5.
张刚  张永伟 《中国物理 B》2017,26(3):34401-034401
Two-dimensional(2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides(e.g., Mo S2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of Mo S2 and the new strategy for thermal management of Mo S2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator.  相似文献   

6.
Na Qin 《中国物理 B》2022,31(3):37101-037101
Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using angle-resolved photoemission spectroscopy and ab initio calculation, we investigate the electronic structure of Cu$_{2}$Tl$X_{2}$ ($X=\text{Se, Te}$), ternary transition metal chalcogenides with quasi-two-dimensional crystal structure. The band dispersions near the Fermi level are mainly contributed by the Te/Se p orbitals. According to our ab-initio calculation, the electronic structure changes from a semiconductor with indirect band gap in Cu$_{2}$TlSe$_{2}$ to a semimetal in Cu$_{2}$TlTe$_{2}$, suggesting a band-gap tunability with the composition of Se and Te. By comparing ARPES experimental data with the calculated results, we identify strong modulation of the band structure by spin-orbit coupling in the compounds. Our results provide a ternary platform to study and engineer the electronic properties of transition metal chalcogenides related to large spin-orbit coupling.  相似文献   

7.
Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic electronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.  相似文献   

8.
王建禄  胡伟达 《中国物理 B》2017,26(3):37106-037106
Two-dimensional(2D) materials, such as graphene and Mo S2 related transition metal dichalcogenides(TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials,possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor(FET) structures with ferroelectric gate dielectric construction(termed Fe FET). One type of device is for logic applications, such as a graphene and TMDC Fe FET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material Fe FET.  相似文献   

9.
Two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers have currently been of immense interest in materials research because of their versatility, and tunable electronic and magnetic properties. In this study, we systematically studied the electronic and magnetic properties in pristine and hydrogenated 1T, 1T’, and 2H TMD monolayers. We found Group IV (Ti, Zr, and Hf), VI (Cr, Mo, and W), and X (Ni, Pd, and Pt) pristine TMD monolayers, respectively, mostly adopted 1T, 2H, and 1T as their stable structures, except for WTe2 which exhibits 1T’. The stable 1T’ structure only exists for pristine WTe2 and it had been identified as a topological insulator with a band gap of 0.11 eV. Upon hydrogenation, a structural phase transition occurred from 1T to 2H in Group IV, while for Group X, the stable structure remained 1T. For Group VI, the stable phase transitioned from 1T to 2H or 1T’ phases. Moreover, we found nineteen 2D magnetic materials through hydrogenation. Finally, further exploration of band topologies under hybrid functional calculations revealed that four of these identified magnetic monolayer structures exhibit quantum anomalous Hall effect. Our findings show that hydrogenated TMDs provide a new ground in searching for materials which have the potential for spintronics applications.  相似文献   

10.
Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures. In these experiments a wide range of dielectrics have been studied including binary transition metal oxides, perovskite oxides, chalcogenides, carbon- and silicon-based materials, as well as organic materials. RS phenomena can be used to store information and offer an attractive performance, which encompasses fast switching speeds, high scalability, and the desirable compatibility with Si-based complementary metal-oxide-semiconductor fabrication. This is promising for nonvolatile memory technology, i.e., resistance random access memory (RRAM). However, a comprehensive understanding of the underlying mechanism is still lacking. This impedes faster product development as well as accurate assessment of the device performance potential. Generally speaking, RS occurs not in the entire dielectric but only in a small, confined region, which results from the local variation of conductivity in dielectrics. In this review, we focus on the RS in oxides with such an inhomogeneous conductivity. According to the origin of the conductivity inhomogeneity, the RS phenomena and their working mechanism are reviewed by dividing them into two aspects: interface RS, based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer, and bulk RS, realized by the formation, connection, and disconnection of conductive channels in the oxides. Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.  相似文献   

11.
Layered transition metal dichalcogenides (TMDs) are a diverse group of materials whose properties vary from semiconducting to metallic with a variety of many body phenomena, ranging from charge density wave (CDW), superconductivity, to Mott-insulators. Recent interest in topologically protected states revealed also that some TMDs host bulk Dirac- or Wyle-semimetallic states and their corresponding surface states. In this review, we focus on the synthesis of TMDs by vacuum processes, such as molecular beam epitaxy (MBE). After an introduction of these preparation methods and categorize the basic electronic properties of TMDs, we address the characterization of vacuum synthesized materials in their ultrathin limit-mainly as a single monolayer material. Scanning tunneling microscopy and angle resolved photoemission spectroscopy has revealed detailed information on how monolayers differ in their properties from multi-layer and bulk materials. The status of monolayer properties is given for the TMDs, where data are available. Distinct modifications of monolayer properties compared to their bulk counterparts are highlighted. This includes the well-known transition from indirect to direct band gap in semiconducting group VI-B TMDs as the material-thickness is reduced to a single molecular layer. In addition, we discuss the new or modified CDW states in monolayer VSe2 and TiTe2, a Mott-insulating state in monolayer 1T-TaSe2, and the monolayer specific 2D topological insulator 1T′-WTe2, which gives rise to a quantum spin Hall insulator. New structural phases, that do not exist in the bulk, may be synthesized in the monolayer by MBE. These phases have special properties, including the Mott insulator 1T-NbSe2, the 2D topological insulators of 1T′-MoTe2, and the CDW material 1T-VTe2. After discussing the pure TMDs, we report the properties of nanostructured or modified TMDs. Edges and mirror twin grain boundaries (MTBs) in 2D materials are 1D structures. In group VI-B semiconductors, these 1D structures may be metallic and their properties obey Tomonaga Luttinger quantum liquid behavior. Formation of Mo-rich MTBs in Mo-dichalcogenides and self-intercalation in between TMD-layers are discussed as potential compositional variants that may occur during MBE synthesis of TMDs or may be induced intentionally during post-growth modifications. In addition to compositional modifications, phase switching and control, in particular between the 1H and 1T (or 1T′) phases, is a recurring theme in TMDs. Methods of phase control by tuning growth conditions or by post-growth modifications, e.g. by electron doping, are discussed. The properties of heterostructures of TMD monolayers are also introduced, with a focus on lateral electronic modifications in the moiré-structures of group VI-B TMDs. The lateral potential induced in the moiré structures forms the basis of the currently debated moiré-excitons. Finally, we review a few cases of molecular adsorption on nanostructured monolayer TMDs. This review is intended to present a comprehensive overview of vacuum studies of fundamental materials' properties of TMDs and should complement the investigations on TMDs prepared by exfoliation or chemical vapor deposition and their applications.  相似文献   

12.
魏侠  闫法光  申超  吕全山  王开友 《中国物理 B》2017,26(3):38504-038504
Transition metal dichalcogenides(TMDCs) have gained considerable attention because of their novel properties and great potential applications. The flakes of TMDCs not only have great light absorption from visible to near infrared, but also can be stacked together regardless of lattice mismatch like other two-dimensional(2D) materials. Along with the studies on intrinsic properties of TMDCs, the junctions based on TMDCs become more and more important in applications of photodetection. The junctions have shown many exciting possibilities to fully combine the advantages of TMDCs, other2 D materials, conventional and organic semiconductors together. Early studies have greatly enriched the application of TMDCs in photodetection. In this review, we investigate the efforts in photodetectors based on the junctions of TMDCs and analyze the properties of those photodetectors. Homojunctions based on TMDCs can be made by surface chemical doping,elemental doping and electrostatic gating. Heterojunction formed between TMDCs/2D materials, TMDCs/conventional semiconductors and TMDCs/organic semiconductor also deserve more attentions. We also compare the advantages and disadvantages of different junctions, and then give the prospects for the development of junctions based on TMDCs.  相似文献   

13.
黎栋栋  周武 《物理学报》2017,66(21):217303-217303
二维原子晶体材料,如石墨烯和过渡金属硫族化合物等,具有不同于其块体的独特性能,有望在二维半导体器件中得到广泛应用.晶体中的结构缺陷对材料的物理化学性能有直接的影响,因此研究结构缺陷和局域物性之间的关联是当前二维原子晶体研究中的重要内容,需要高空间分辨率的结构研究手段.由于绝大部分二维原子晶体在高能量高剂量的电子束辐照下容易发生结构损伤,利用电子显微方法对二维原子晶体缺陷的研究面临诸多挑战.低电压球差校正扫描透射电子显微(STEM)技术的发展,一个主要目标就是希望在不损伤结构的前提下对二维原子晶体的本征结构缺陷进行研究.在STEM下,多种不同的信号能够被同步采集,包括原子序数衬度高分辨像和电子能量损失谱等,是表征二维原子晶体缺陷的有力工具,不但能对材料的本征结构进行单原子尺度的成像和能谱分析,还能记录材料结构的动态变化.通过调节电子束加速电压和电子辐照剂量,扫描透射电子显微镜也可以作为电子刻蚀二维原子晶体材料的平台,用于加工新型纳米结构以及探索新型二维原子晶体的原位制备.本综述主要以本课题组在石墨烯和二维过渡金属硫族化合物体系的研究为例,介绍低电压扫描透射电子显微学在二维原子晶体材料研究中的实际应用.  相似文献   

14.
Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed.  相似文献   

15.
We performed density functional theory calculations to probe sodium adsorption and diffusion properties on two-dimensional (2D) MTe2 (M = Co, Fe, Mn, Sc, Ti) first-row transition metal tellurides, and gauge their potentials as anode materials for sodium-ion batteries (NIBs). In this work, we found that all considered MTe2 possess strong sodium adsorption properties and excellent diffusion kinetics. Moreover, sodium atoms prefer to bind on sites that are farther apart rather than on nearby sites, implying that (1) the sodium clustering is not favored and (2) the large adsorption energies are essentially due to the sodium-MTe2 interaction. We further adopted ab initio random structure search to compute probable stable sodium adsorption configurations, to obtain more accurate capacities and open circuit voltages. The calculated capacities and open circuit voltage are reasonable, and are suitable for anode applications. Our results show that in general, 2D MTe2 sheets have suitable sodium adsorption energies and diffusion barriers, and could be applied as sodium ion battery anode materials.  相似文献   

16.
The discovery of two-dimensional (2D) materials like graphene inspired the researchers and scientists to develop new 2D materials. The 2D materials create extensive attention due to their novel electronic properties, large surface area, charging capacity, optical, biocompatible, unique physical and chemical properties. Many of these properties are an excellent requirement for an application of electrode for batteries and super-capacitors. The applications of 2D materials are not just confined to Opto and nano-electronics but a strong potential in gas, and biosensing technologies. The 2D materials are stackable through weak Van der Waals, therefore, used in alkali metal ion batteries as electrodes, this causes zero volume and area changes during the intercalation and deintercalation of alkali metal. Also, a large surface of 2D materials provides large storage capacity as compared to the bulk materials. The heterostructures based on 2D materials pay significant attention towards the optoelectronics, nanoelectronics and in alkali metal ion battery applications also. In this paper, we review the importance of heterostructure, stacking technique in interfacial synthesis, address their structural morphologies by the interface of 2D materials and its application for energy storage, gas, and biosensing applications. We will come up with an overview of interfacial characters and highlights about the advantages and individuality of 2D materials.  相似文献   

17.
Yumu Yang 《中国物理 B》2021,30(11):116802-116802
Bulk group IB transition-metal chalcogenides have been widely explored due to their applications in thermoelectrics. However, a layered two-dimensional form of these materials has been rarely reported. Here, we realize semiconducting Cu2Se by direct selenization of Cu(111). Scanning tunneling microcopy measurements combined with first-principles calculations allow us to determine the structural and electronic properties of the obtained structure. X-ray photoelectron spectroscopy data reveal chemical composition of the sample, which is Cu2Se. The observed moiré pattern indicates a lattice mismatch between Cu2Se and the underlying Cu(111)-$\sqrt{3}$×$\sqrt{3}$ surface. Differential conductivity obtained by scanning tunneling spectroscopy demonstrates that the synthesized Cu2Se exhibits a band gap of 0.78 eV. Furthermore, the calculated density of states and band structure demonstrate that the isolated Cu2Se is a semiconductor with an indirect band gap of ~ 0.8 eV, which agrees quite well with the experimental results. Our study provides a simple pathway varying toward the synthesis of novel layered 2D transition chalcogenides materials.  相似文献   

18.
Atomic ordering and gap formation in Ag-Sb-based ternary chalcogenides   总被引:1,自引:0,他引:1  
Novel semiconductors with tailored properties can be designed theoretically based on our understanding of the interplay of atomic and electronic structures and the nature of the electronic states near the band-gap region. We discuss here the realization of this idea in Ag-Sb-based ternary chalcogenides, which are important optical phase change and thermoelectric materials. Based on our studies we propose new systems for high-performance thermoelectrics.  相似文献   

19.
The formation of anionic clusters similar to O22?, S22?, Se22? but with higher internuclear distances can be responsible for the more specific forms of interaction required to explain the properties of UO2+x, and many transition metal chalcogenides such as Fe1?xS, Ni1?x,S etc. Resonant structures can lead to clusters of this type even in stoichiometric chalcogenides with NiAs-type structure due to the dp mixing, and low energy differences between metal d- and chalcogen p-bands. The mixed valence effects involved are discussed qualitatively.  相似文献   

20.
自石墨烯被发现以来,二维材料因其优异的特性获得了持续且深入的探索与发展,以石墨烯、六方氮化硼、过渡金属硫化物、黑磷等为代表的二维材料相关研究层出不穷.随着二维新材料制备与应用探索的不断发展,单一材料性能的不足逐渐凸显,研究者们开始考虑采用平面拼接和层间堆垛所产生的协同效应来弥补单一材料的不足,甚至获得一些新的性能.利用二维材料晶格结构的匹配构建异质结,实现特定的功能化,或利用范德瓦耳斯力进行堆垛,将不同二维材料排列组合,从而在体系里引入新的自由度,为二维材料的性质研究和实际应用打开了新的窗口.本文从原子制造角度,介绍了二维平面和范德瓦耳斯异质结材料的可控制备和光电应用.首先简要介绍了应用于异质结制备的常见二维材料的分类及异质结的相关概念,然后从原理上分类列举了常用的表征方法,随后介绍了平面和垂直异质结的制备方法,并对其光电性质及器件应用做了简要介绍.最后,对领域内存在的问题进行了讨论,对未来发展方向做出了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号