首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
运用广义梯度密度泛函理论(GGA)的RPBE方法结合周期平板模型,在DNP基组下,研究了NO以N端和O端两种吸附取向在CuCl(111)表面上的吸附.通过对不同吸附位和不同覆盖度下的吸附能和几何构型参数的计算和比较发现:NO吸附在CuCl(111)表面Cu原子上的top位时为稳定的吸附;覆盖度为0.25 mL时吸附比较稳定;NO的N端吸附比O端吸附更有利,N端吸附时为化学吸附,O端吸附时为物理吸附.布居分析结果表明整个吸附体系发生了从Cu原子向NO分子的电荷转移,且O端吸附时电荷转移更多.N端吸附和O端吸附时,N-O键的伸缩振动频率均红移,同时O端吸附时红移更多.  相似文献   

2.
运用广义梯度密度泛函理论结合周期性平板模型方法研究了N2O在完整及负载Cu的四方相ZrO2(101)表面的吸附与解离.结果表明,N2O在完整ZrO2(101)表面的吸附均为物理吸附,Cu在其完整表面的次表层第一氧位为最稳定吸附位,且覆盖度为0.25ML时的吸附最为稳定,吸附能为155.8kJ/mol;N2O分子中O端弱物理吸附于Cu/ZrO2(101)表面,其N端及平行吸附方式得到的稳定吸附能分别为121.6和66.8kJ/mol.频率及电荷布居计算表明,吸附后对称和反对称伸缩振动频率均发生红移,电子由Cu负载底物表面转移给N2O分子.对N2O分子的解离考虑了N端垂直吸附和平行吸附两种解离反应过程,发现平行吸附过程的解离更易发生.  相似文献   

3.
采用广义梯度密度泛函理论结合周期平板模型方法, 在DNP基组下, 研究了NO双分子在三重态和单重态两种电子组态下在Cu2O(111)完整表面的吸附情况. 考虑了Cu+(NO)(NO)、Cu+(NO)(ON)及Cu+(ON)(ON)这三种构型, 计算了它们的吸附能和Mulliken电荷, 分析并预测了吸附后可能产生的物种. 结果表明, 当两个NO分子都以O端吸附在Cu2O(111)表面时即Cu+(ON)(ON)构型, N—N键长很短, 只有124.4 pm, 吸附的两个NO分子形成了二聚体形式, 这种吸附构型有利于进一步离解产生N2或N2O并形成Cu-O表面物种.  相似文献   

4.
采用密度泛函理论(DFT)研究了NOx/CO2/H2O在BaO(001)表面不同覆盖度下的吸附情况.计算表明NO以N端吸附在表面氧位,形成NO22-吸附物种;CO2以C端吸附在表面氧位,形成表面CO32-;而H2O在表面发生解离吸附,导致BaO表面的羟基化.NO2有两种主要的吸附模式:以N端吸附在表面氧位,或以O端吸附表面Ba位.各物种在表面的吸附顺序为:NO≈H2O相似文献   

5.
 利用程序升温反应谱、X射线光电子能谱和高分辨电子能量损失谱研究了NO在清洁和预吸附氧的Pt(110)表面的吸附和分解. 在清洁的Pt(110)表面,室温下低覆盖度时NO以桥式吸附为主,高覆盖度时NO以线式吸附为主. 加热过程中部分NO(主要是桥式吸附物种)分解,生成N2和N2O. 室温下O2在Pt(110)表面发生解离吸附. Pt(110)表面预吸附氧会抑制桥式吸附NO的生成,并导致其脱附温度降低40 K. 降低脱附温度有利于桥式吸附NO的分子脱附,从而抑制分解反应. 这些结果从表面化学的角度合理地解释了铂催化剂在富氧条件下对NO分解能力的降低.  相似文献   

6.
利用密度泛函理论系统研究了O2与CO在CeO2(110)表面的吸附反应行为. 研究表明, O2在洁净的CeO2(110)表面吸附热力学不利, 而在氧空位表面为强化学吸附, O2分子被活化, 可能是重要的氧化反应物种. CO在洁净的CeO2(110)表面有化学吸附与物理吸附两种构型, 前者形成二齿碳酸盐物种, 后者与表面仅存在弱的相互作用. 在氧空位表面, CO可分子吸附或形成碳酸盐物种, 相应吸附能均较低. 当表面氧空位吸附O2后(O2/Ov), CO可吸附生成碳酸盐或直接生成CO2, 与原位红外光谱结果相一致. 过渡态计算发现,O2/Ov/CeO2(110)表面的三齿碳酸盐物种经两齿、单齿过渡态脱附生成CO2. 利用扩展休克尔分子轨道理论分析了典型吸附构型的电子结构, 说明表面碳酸盐物种三个氧原子电子存在离域作用, 物理吸附的CO及生成的CO2电子结构与相应自由分子相似.  相似文献   

7.
基于密度泛函理论(DFT)计算研究了O3在完整和具有氧空位的CuO(111)表面吸附的吸附位、吸附结构、吸附能和电子转移情况,比较了O3在完整表面和具有氧空位的表面分解的路径和能垒,分析了氧空位和表面吸附氧的生成机理。结果表明,在完整CuO表面,O3分子通过化学吸附或物理吸附表面结合,吸附能最高为-1.22eV(构型bri(2))。O3在具有氧空位的CuO表面均为化学吸附,吸附能最高为-2.95eV(构型ovbri(3)),显著高于完整表面的吸附能。O3吸附后,Cu吸附位的电荷密度减小,O3中的O原子附近的电荷密度显著增强,电荷从CuO表面转移到O3,并形成Cu-O离子键。O3分解后形成了超氧物种,提高了表面的氧化活性。在完整表面,以构型bri(2)为起始构型的路径反应能垒最低,为0.52eV;O2*在完整表面的脱附所需要的最低能量为0.42eV,形成氧空位的O2*脱附能为2.06eV。在具有氧空位的表面,O3分解的反应能垒为0.30eV(构型ovbri(1))和0.12eV(构型ovbri(3)),均低于完整表面的反应能垒;分解形成的O2*的最低脱附能也低于完整表面,为0.27eV。可见,氧空位的形成提高了吸附能,降低了反应能垒,使O3分子更容易吸附在CuO表面,并加快了O3的催化分解。  相似文献   

8.
运用广义梯度密度泛函理论的PW91方法结合周期平板模型,在DNP基组下研究了氧分子和氧原子在CuCl(111)表面上的吸附.对氧分子在CuCl(111)表面吸附的相关计算和比较发现,覆盖度为0.25单层时的吸附构型为稳定的吸附构型,氧分子倾斜地吸附在CuCl(111)表面的顶位时比较稳定,吸附后O2分子的伸缩振动频率与自由O2分子相比发生了红移.态密度和Mulliken电荷布居分析结果表明,整个吸附体系发生了由Cu原子向O2分子的电荷转移.氧原子在CuCl(111)表面吸附的计算结果表明,氧原子倾向于以穴位(hollow)吸附在CuCl(111)表面,通过Mulliken电荷布居和态密度分析对氧原子在CuCl表面的吸附行为作了进一步探讨.  相似文献   

9.
利用密度泛函理论研究了巴豆醛和肉桂醛分子在Pt-Ni-Pt(111)面的吸附构型以及相关电子性质. 吸附构型与吸附能结果表明, 巴豆醛和肉桂醛在覆盖度为1/25 ML的条件下, 以C=C和C=O双键协同吸附在Pt-Ni-Pt(111)面较为稳定, 且肉桂醛与Pt-Ni-Pt(111)面的吸附能远大于巴豆醛. 由Mulliken电荷布局和差分电荷密度可知, 在吸附过程中肉桂醛分子向Pt-Ni-Pt(111)面上转移的电荷数较巴豆醛更多, 相互作用更大. 由电子态密度分析结果可知, 不饱和醛与Pt-Ni-Pt(111)面的吸附作用主要是由于分子的p轨道电子与催化剂d轨道电子之间的相互作用. 由于苯基的存在使肉桂醛分子在Pt-Ni-Pt(111)面上的吸附更强, 且平行于催化剂表面.  相似文献   

10.
一氧化碳分子在Pt/t-ZrO2(101)表面的吸附性质   总被引:2,自引:0,他引:2  
运用广义梯度密度泛函理论(GGA-PW91)结合周期平板模型方法,研究了CO分子在完整与Pt负载的四方ZrO2(101)表面的吸附行为.结果表明:表面第二层第二氧位和表面第二桥位分别为CO分子和Pt原子在完整ZrO2(101)表面的稳定吸附位,且覆盖度为0.25ML(monolayer)时均为稳定吸附构型,吸附能分别为56.2和352.7kJ·mol-1.CO分子在负载表面的稳定吸附模式为C-end吸附,吸附能为323.8kJ·mol-1.考察了CO分子在负载表面吸附前后的振动频率、态密度和轨道电荷布居分析,并与CO分子和Pt原子在ZrO2表面的结果进行比较.结果表明,C端吸附CO分子键长为0.1161nm,与自由的和吸附在ZrO2表面后的CO相应值(0.1141和0.1136nm)相比伸长.吸附后C―O键伸缩振动频率为2018cm-1,与自由CO分子相比发生红移;吸附后CO带部分正电荷,电子转移以Pt5dCO2π的π反馈机理占主导地位.  相似文献   

11.
运用广义梯度近似密度泛函理论方法(GGA-PW91)结合周期平板模型, 研究水分子在二氧化铪(111)和(110)表面不同吸附位置在不同覆盖度下的吸附行为. 通过比较不同吸附位的吸附能和几何构型参数发现:(111)和(110)表面铪原子(top 位)是活性吸附位. 水分子与表面的吸附能值随覆盖度的变化影响较小. 在(111)和(110)表面, 水分子都倾向以氧端与表面铪原子相互作用. 同时也计算了羟基、氧和氢在表面的吸附, Mulliken 电荷布居, 态密度及部分频率. 结果表明, 在两种表面羟基以氧端与表面铪相互作用, 氧原子与表面铪和氧原子同时成键, 而氢原子直接与表面氧原子相互作用形成羟基. 通过过渡态搜索, 水分子在(111)和(110)表面发生解离, 反应能垒分别为9.7和17.3 kJ·mol-1, 且放热为59.9和47.6 kJ·mol-1.  相似文献   

12.
运用密度泛函理论中广义梯度近似(GGA)的PW91方法,结合周期性平板模型,探讨了NO分子在Cu3Pt(111)表面上不同吸附位的吸附行为.结果表明:NO分子以N端朝下方式吸附在top-Pt以及hcp1和fcc2位(分别为表面Cu2Pt和Cu3簇)的吸附模式最稳定,吸附能分别为101.8、124.5和118.1kJ·mol-1.对于hcp1和fcc2位的吸附,NO中的N原子分别与底物的Cu2Pt和Cu3簇成键.吸附前后的电荷布居、态密度和振动频率的分析结果表明,净电子从底物合金表面转移到NO,N—O键伸长,频率发生红移.合金Cu3Pt和纯贵金属Pt对NO的吸附性质相似.  相似文献   

13.
NO双分子和二聚体与Cu2作用的理论计算   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)中的B3LYP方法,在Lanl2DZ基组下,对NO双分子和二聚体与铜原子簇相互作用的结构进行了研究. 结果表明,NO可以在铜表面相邻的两个铜原子上形成稳定的双分子吸附和二聚体吸附,而在双分子吸附形式中NO以氮原子吸附在铜上的构型最稳定,且顶点吸附的稳定性不如非顶点吸附形式.在二聚体吸附形式中, N-N键被加强,而N-O键被削弱的程度大于双分子吸附形式,说明二聚体的形成有利于NO在金属铜表面的直接分解.同时电荷布居分析表明,单重态的二聚体与铜作用时,铜原子上的平均电荷达到0.66 e,说明在这种吸附形式中铜被离子化的倾向较大,而且这种吸附形式最有利于NO的分解.这些结果说明NO经二聚体形式在铜表面直接催化分解是可行的.  相似文献   

14.
运用密度泛函理论研究了NO在CuCr2O4(100)表面4个可能吸附位的顶位吸附。结果表明:表面铜(Cu)和铬(Cr)为活性吸附位,吸附能分别为98.1 kJ·mol-1和92.9 kJ·mol-1。对活性吸附位Cu位和Cr位考虑了NO以N端和O端2种吸附取向的吸附,发现N端吸附比O端吸附更为有利,O端吸附为简单的物理吸附。在2种吸附取向情况下,N-O键的伸缩振动频率都发生了红移。Mulliken布居分析表明,N端吸附时NO分子失去电子;对NO吸附前后的态密度分析可知,对Cu位和Cr位N端吸附NO的2π轨道得到电子。本文并进一步讨论了NO分子在CuCr2O4 (100)表面Cu位和Cr位的成键机理。  相似文献   

15.
周期性密度泛函理论研究NO在Cu2O(111)表面上的吸附   总被引:3,自引:0,他引:3  
运用广义梯度密度泛函理论(GGA)的PBE方法结合周期平板模型,在DND基组下,研究了NO以N端和O端两种吸附取向在Cu2O(111)非极性表面上的吸附。通过对不同吸附位置的吸附能和几何构型参数的计算和比较发现:表面上配位不饱和的铜离子(CuCUS)为活性吸附位;NO的N端吸附比O端吸附更为有利,N端吸附时吸附能可达到113.5 kJ·mol-1,而O端情况下只有39.7 kJ·mol-1;NO倾斜吸附在Cu2O(111)表面上,O端吸附时倾斜度更大。在两种吸附取向情况下,N-O键的伸缩振动频率都发生了较大的红移,N端吸附情况下红移150 cm-1,O端时红移330 cm-1。前线轨道分析表明,Cu与NO间的吸附作用主要是Cu的d轨道和NO的π*轨道间的相互作用。表面弛豫的计算表明,Cu2O(111)面的弛豫对O端吸附方式产生较大影响,考虑表面弛豫时O端吸附为很弱的化学吸附(吸附能为39.7 kJ·mol-1),而没有考虑弛豫时吸附能为60.5 kJ·mol-1。  相似文献   

16.
CO在CeO2(111)表面的吸附与氧化   总被引:2,自引:0,他引:2  
采用密度泛函理论计算了CO在CeO2(111)表面的吸附与氧化反应行为. 结果表明, O2在洁净的CeO2(111)表面为弱物理吸附, 而在氧空位表面是强化学吸附, 且O2分子活化程度较大, O—O键长为0.143 nm. CO在CeO2(111)表面吸附行为的研究表明, CO在洁净表面及氧空位表面上为物理吸附, 吸附能均小于0.42 eV; 当表面氧空位吸附O2后, CO可吸附生成二齿碳酸盐中间体或直接生成CO2, 与原位红外光谱结果相一致. 表面碳酸盐物种脱附生成CO2的能垒仅为0.28 eV. 计算结果表明, 当CeO2表面存在氧空位时, Hubbard参数U对CO吸附能有一定的影响. CeO2载体在氧化反应中可能的催化作用为, 在氧气氛下, CeO2表面氧空位吸附O2分子, 形成活性氧物种, 参与CO催化氧化反应.  相似文献   

17.
NO在氧预吸附Ir(100)表面吸附和解离的第一性原理研究   总被引:1,自引:0,他引:1  
采用第一性原理密度泛函理论和周期性平板模型研究了NO在O预吸附Ir(100)表面的吸附和解离, 并考察了预吸附的O对可能产物N2, N2O和NO2的选择性的影响. 优化得到反应过程中初态、 过渡态和末态的吸附构型, 并获得反应的势能面信息. 计算结果表明, NO在O预吸附表面最稳定的吸附位是桥位, 其次是顶位. 桥位和顶位的NO在表面存在两条解离通道, 即直接解离通道和由桥位和顶位扩散到平行空位, 继而发生N-O键断裂生成N原子和O原子的解离通道. 此分离机理与洁净表面上NO解离机理相同, 但后一种解离方式优于前一种, 是NO在表面上解离的主要通道. 预吸附的O原子在不同程度上抑制了NO的解离, 导致桥位和顶位NO解离互相竞争. 在O预吸附Ir(100)表面, N2气是唯一的产物, 不会有副产物N2O和NO2的生成, 与实验结果一致. 预吸附的O在N/O低覆盖度下几乎不影响N2气的生成, 但在较高覆盖度下则促进了N2气的生成.  相似文献   

18.
甲醛在CeO2(111)表面吸附的密度泛函理论研究   总被引:4,自引:1,他引:3  
采用基于第一性原理的密度泛函理论和周期平板模型, 研究了甲醛在以桥氧为端面的CeO2(111)稳定表面上的吸附行为. 通过对不同覆盖度, 不同吸附位的甲醛吸附构型、吸附能及电子态密度的分析发现, 甲醛在CeO2(111)表面存在化学吸附与物理吸附两种情况. 化学吸附结构中甲醛的碳、氧原子分别与表面的氧、铈原子发生相互作用, 形成CH2O2物种; 吸附能随着覆盖度的增加而减小. 与自由甲醛分子相比, 物理吸附的甲醛构型变化不大, 其吸附能较小. 利用CNEB(climbing nudged elastic band)方法计算了甲醛在CeO2(111)表面的初步解离反应活化能(约1.71 eV), 远高于甲醛脱附能垒, 这与甲醛在清洁CeO2(111)表面程序升温脱附实验中产物主要为甲醛的结果相一致.  相似文献   

19.
刘璐  郑成航  高翔 《分子催化》2017,31(6):544-552
基于第一性原理密度泛函计算方法研究了NO在Mn_2O_3(110)面的吸附行为,计算了Mn_2O_3(110)面吸附NO和O_2的吸附构型的结构参数、吸附能和电子结构.结果表明,在Mn_2O_3(110)表面上,NO倾向于吸附在Mn top位,吸附前后的结构总能变化在-0.61~-1.29 eV之间,NO吸附后Mn吸附位周围的配位结构发生变化,使得Mn的电子向NO转移.进一步研究了吸附O_2后的Mn_2O_3表面再进一步吸附NO的行为,发现了ONOO*结构的形成.NO和O_2在表面共吸附形成ONOO*结构时的吸附能(-1.23和-1.39 eV)高于单纯吸附NO时的吸附能,此时Mn的电子向ONOO*结构转移,NO和O_2投影态密度的电子峰广泛交叠,说明成键原子之间有强共价键作用.  相似文献   

20.
应用密度泛函理论研究了O3分子在2×1 CuO(110)面(S1)和掺杂一个Fe原子的2×1 CuO(110)面(S2)的吸附过程和电子特性. 计算结果表明, O3分子与表面S1和S2有很强的相互作用, O3分子在表面吸附反应的活化能和反应能均为负值, 反应很容易进行. 态密度和电荷密度分析结果进一步证实了O3分子在S1上吸附是桥位化学吸附, 形成表面臭氧化物, 在S2上吸附分解为1个被吸附的表面氧原子和1个自由氧分子. 电子特性分析表明, O3分子与S1和S2相互作用的本质是O3分子的价轨道2p与CuO(110)表面杂化轨道的相互作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号