首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A cladding modified fiber optic sensor coated with nanocrystalline ZnO is proposed for ammonia gas detection. As-prepared and annealed zinc oxide (500 and 1200 °C) samples are used as the gas sensing media. The spectral characteristics of the fiber optic gas sensor are studied for various concentrations of ammonia (0–500 ppm). The sensor exhibits linear variation in the spectral peak intensity with the ammonia concentration. The characteristics of the sensor when exposed to ethanol and methanol gases are also studied for gas selectivity. The time response characteristics of the sensor are reported.  相似文献   

2.
The micro structured plate-like lithium tetraborate, Li2B4O7 (1 μm in diameter) has been prepared by sol–gel method and characterized structurally by X-ray diffraction and morphologically by scanning electron microscopy. UV–Vis spectrum shows about 60% transparency in the visible region and the optical energy band gap is found to be 3.5 eV which is also confirmed by strong near band edge emission from luminescence spectrum. The spectral characteristics of the cladding modified fiber optic sensor coated with microcrystalline Li2B4O7 are studied for various concentrations of ethanol, methanol and ammonia (50–500 ppm). At 298 K, the sensitivity for ethanol is ?10 counts/ppm which is relatively higher than ammonia (?4 counts/ppm) and methanol (?3 counts/ppm). The time response of the sensor is presented for pure Li2B4O7 with ethanol gas.  相似文献   

3.
A sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was evaluated for the detection of trace levels of ethylene at atmospheric pressure using a fiber coupled DFB diode laser emitting in the 1.62 μm spectral range. A noise-equivalent QEPAS signal of ∼4 ppm C2H4 was achieved for a 0.7 s data acquisition time using wavelength-modulation with a second-harmonic detection scheme on the strongest C2H4 absorption peak at 6177.14 cm−1 with an average optical power of ∼15 mW. Improved detection sensitivity of 0.5 and 0.3 ppm C2H4 (1σ) was demonstrated using longer averaging time of 70 and 700 s, respectively. Important characteristics for the QEPAS based sensor operation in real-world conditions are presented, particularly the influence of external temperature variations. Furthermore, the response time of the ethylene sensor was measured in different configurations and it is shown that the QEPAS technique can provide a response time in a few seconds range even without active gas flow.  相似文献   

4.
A highly sensitive surface plasmon resonance (SPR) based fiber optic sensor with indium oxide (In2O3) layer coated on the core of the optical fiber is presented and theoretically analyzed. The sensitivity of the SPR based fiber optic sensor has been evaluated numerically. It is shown that the proposed SPR based fiber optic sensor with In2O3 layer possesses high sensitivity in the near infrared region of spectrum, which needs attention to many environmental and security applications and offers more accurate and highly reproducible measurements. In addition, the sensitivity of the SPR based fiber optic sensor decreases with the increase in the thickness of In2O3 layer. With sensitivity as high as 4600 nm/RIU, the 170 nm thick In2O3 layer based fiber optic SPR sensor demonstrates better performance.  相似文献   

5.
The development of new strategies for synthesizing 1D cerium oxide (CeO2) hollow nanostructures has attracted much attention in recent years due to the importance of their superior properties and highly anisotropic geometry. This study reports an unpublished route of fabricating novel multiwalled CeO2-δ nanotubes (CeO2-δ NTs) in which the entire volume of functionalized multiwalled carbon nanotubes (f-MWCNTs) is converted into the CeO2-δ pseudomorph through oxidation and dehydration topotactic reactions. The stable CeO2-δ (111) planes are topotactically grown on the curved C (002) planes, preferentially exposed along the nanotube axis. In their initial condition, the novel nanotubes consist of Ce oxyhydroxide (CeO2-x(OH)x) with residual carbon. When heating the air up to 500 °C, CeO2-x(OH)x transforms gradually by dehydration into CeO2-δ, while the residual carbon is oxidized. Despite compositional changes, nanotubes maintain their multiwalled structural integrity up to ≈550 °C. The CeO2-δ NTs exhibit an unusually high presence of Ce3+ ions and surface O vacancies, contributing to a low direct band gap ranging from 2.67 to 2.32 eV compared to their NPs counterparts (3.2 eV).  相似文献   

6.
A nanostructured and high conductive cupric oxide (CuO NPs) with hierarchical CeO2 sheets-like structure was synthesized by a facile sonochemical approach. Furthermore, CuO/CeO2 nanostructure is synthesized by high-intensity ultrasonic probe (Ti-horn, 50 kHz and 100 W) at ambient air. Moreover, the synthesized CuO/CeO2 material was characterized by various analytical techniques including FESEM, EDX, XRD and electrochemical methods. Then, the synthesized CuO/CeO2 composite was applied for the electrocatalytic detection of dopamine using CV and DPV techniques. In addition, the CuO/CeO2 modified electrode has good electrocatalytic performance with high linear range from 0.025 to 98.5 µM towards the determination of dopamine drug and high sensitivity of the CuO/CeO2 modified drug sensor was calculated as 16.34 nM and 4.823 μA·µM−1·cm−2, respectively. Moreover, a repeatability, reproducibility and stability of the CuO@CeO2 mixture modified electrode were analyzed towards the determination of dopamine biomolecule. Interestingly, the real time application of CuO@CeO2 modified electrode was established in different serum and drug samples.  相似文献   

7.
A new fiber-optic ammonia sensor utilizing rectangular-cladding eccentric-core fiber and a sensitive film containing an indicator dye is demonstrated. The sensitive film is a SiO2-GeO2 gel film including an indicator dye of bromocresol purple or bromocresol green, which is dip-coated by a sol-gel technique. The attenuation of this sensor changes depending on the concentration of ammonia at the wavelength range of 500–700 nm. This sensor can detect several ppm of gaseous ammonia. Various factors determining the sensitivity to detect the ammonia gas and time response of the sensor are also studied.  相似文献   

8.
We report a prototype CO2 gas sensor based on a simple blackbody infrared source and a spectrally narrow quantum cascade detector (QCD). The detector absorption spectrum is centered at 2260 cm−1 (4.4 μm) and has a full width at half maximum of 200 cm−1 (25 meV). It covers strong absorption bands of two spectrally overlapping CO2 isotopomers, namely the P-branch of 12CO2 and the R-branch of 13CO2. Acquisition of the spectral information and data treatment were performed in a Fourier transform infrared (FTIR) spectrometer. By flushing its sample compartment either with nitrogen, dry fresh air, ambient air, or human breath, we were able to determine CO2 concentrations corresponding to the different gas mixtures. A detection limit of 500 ppb was obtained in these experiments.  相似文献   

9.
The design of core–shell heteronanostructures is powerful tool to control both the gas selectivity and the sensitivity due to their hybrid properties. In this work, the SnO2–ZnO core–shell nanowires (NWs) were fabricated via two-step process comprising the thermal evaporation of the single crystalline SnO2 NWs core and the spray-coating of the grainy polycrystalline ZnO shell for enhanced ethanol sensing performance. The as-obtained products were investigated by X-ray diffraction, scanning electron microscopy, and photoluminescence. The ethanol gas-sensing properties of pristine SnO2 and ZnO–SnO2 core–shell NW sensors were studied and compared. The gas response to 500 ppm ethanol of the core–shell NW sensor increased to 33.84, which was 12.5-fold higher than that of the pristine SnO2 NW sensor. The selectivity of the core–shell NW sensor also improved. The response to 100 ppm ethanol was about 14.1, whereas the response to 100 ppm liquefied petroleum gas, NH3, H2, and CO was smaller, and ranged from 2.5 to 5.3. This indicates that the core–shell heterostructures have great potential for use as gas sensing materials.  相似文献   

10.
A fiber optic sensor for determining the thickness of a transparent plate (1–2.5 mm) is described based on a fiber optic displacement sensor. The sensor characteristics are found to vary with the change in the thickness of a plate. A theoretical model is proposed and validated with experimental results. The behavior of the sensor is evaluated and analyzed in terms of the numerical aperture and diameter of the fiber.  相似文献   

11.
China rose petal was used as robust biotemplate for the facile fabrication of novel ceria nanosheet with a thickness of about 7 nm via a continuous infiltration process. The presence of well-resolved peaks ([111], [200], [220], and [311]) for the products revealed the formation of the fluorite-structured CeO2. The detailed characterization by field-emission scanning electron microscope (FESEM), field-emission transmission electron microscope (FETEM), and atomic force microscopy (AFM) exhibited the biomorphic structure of polycrystalline ceria film with the nanoparticle size of ca. 6.98 nm. Based on the surface chemistry and biochemistry processes, a possible mechanism for the formation of CeO2 nanosheets is proposed. Furthermore, nitrogen adsorption–desorption measurement and photoluminescence spectrum (PL) were employed to characterize the samples. The ceria nanosheet showed the existence of mesopores (pores 2–4 nm diameter) on its surface and a broad emission ranging from 350 to 500 nm in photoluminescence spectrum. X-ray photoelectron spectroscopy analysis (XPS) confirmed that the mesoporous nanosheets possessed more surface vacancies than the bulk CeO2; hence these hierarchical CeO2 layers appear to be potential candidates for catalytic applications.  相似文献   

12.
Fiber optic radioluminescence dosimetry allows real-time dose rate measurements in complex, narrow geometries and at places of high dose rates, without exposing the operator or the susceptible electronics. The keys are the spatial separation of radiation sensitive probe and electronic processing system and their optical connection by a flexible light guide. The small probes are capable of measuring fields of high dose rate gradients and the sealed probe-tip qualifies for applications in the fluid milieu and even for in-vivo-dosimetry. One problem of fiber optic dosimetry is the generation of Cherenkov radiation and fiber luminescence in the irradiated light guide, the so called stem effect. Ruby (Al2O3:Cr) has a narrow radioluminescent emission at 694 nm and is a potential luminophor for fiber optic radioluminescence dosimetry. In this work the influence of the stem effect on our ruby-based fiber optic dosimetry system is examined. The behavior of ruby probes under irradiation up to 0.5 kGy, as well as their luminescence decay characteristics and the applicability for measurements in radiotherapeutic fields are investigated.  相似文献   

13.
《Current Applied Physics》2010,10(5):1249-1254
This paper reports on a simple and inexpensive ultrasonic spray pyrolysis method to synthesize agglomerate-free nanosized SnO2 particles with a size smaller than 10 nm. Scanning electron microscopy, transmission electron microscopy and high resolution X-ray diffraction studies were used to characterize the morphology, crystallinity, and structure of the SnO2 particles. Under the optimized experimental conditions, the prepared SnO2 sensor shows the high response (S = 491) towards 100 ppm ethanol gas at 300 °C, linearity in the range of 100–500 ppm, quick response time (2 s), recovery time (60 s) and selectivity against other gases. The response of the sensor was monitored in a 250–450 °C temperature range. The seven fold enhancement in gas response and selective detection of C2H5OH in the presence of other gases such as CH3OH and CH3CHOHCH3 are the significant points in this investigation. These results demonstrate that pure nanocrystalline SnO2 thin film can be used as the sensing material for fabricating high performance ethanol sensors.  相似文献   

14.
Maleic anhydride was grafted by long-chain alcohols (1-hexadecanol, 1-octadecanol) to amphiphilic mono-L cis-butene dicarboxylates (L = hexadecyl, octadecyl), i.e., MAH, MAO, respectively. Subsequently, corresponding amphiphilic cerium complexes with these two mono-L cis-butene dicarboxylate ligands (Ce(L')3, L'= MAH, MAO) were synthesized and behaved as the precursors to prepare CeO2 nanoparticles for both of which can form nanosized micelle-like aggregates by special self-assembly in the wet chemical process. The nanoparticles were further characterized by Fourier transform-infrared spectroscopy (FTIR), Diffuse reflectance ultraviolet-visible spectra (DRUVS), scanning electron microscope (SEM), transmission electron microscope (TEM), and x-ray diffraction (XRD). Both the CeO2 nanoparticles are in a cubic fluorite structure and present regular and well-dispersion club-like morphology with average particle size in the range of 40–70 nm. Besides, the strong ultraviolet–visible absorption for these CeO2 nanoparticles can be found at the long-wavelength ultraviolet to visible region of 200–500 nm.  相似文献   

15.
In this paper, a theoretical analysis is carried out to estimate the sensitivity and the signal-to-noise ratio (SNR) of a fiber optic surface plasmon resonance (SPR) sensor when fibers with different dopants and different doping concentrations are used. The dopants considered are germanium oxide (GeO2), boron oxide (B2O3), and phosphorus pentoxide (P2O5) in a pure silica fiber. The variation of the dispersion relation with different dopants and doping concentrations are taken into account for the analysis. It is shown that the doping of B2O3 increases the sensitivity of the sensor while the effect of dopant on SNR is negligible. The analysis is extended to fiber optic SPR sensor with bimetallic layers.  相似文献   

16.
Crystal structure, thermochemical stability, transport and magnetic properties of compositions in the (100-x) La0.8Sr0.2MnO3 ± δ xCeO2 (LSMC) system were studied. All compositions in the LSMC series containing more than 2 mol% CeO2 were two phase and consisted of the modified perovskite constituent with rhombohedral structure (R3?c) and ceria as a secondary phase with cubic structure (Fm3?m). The presence of both Ce4+and Ce3+ cations in LSMC compositions was revealed by X-ray Photoelectron Spectroscopy (XPS). CeO2 and compositions in the LSMC series showed good thermochemical stability in air and argon. However, in H2–Ar atmosphere all LSMC compositions underwent reduction followed by decomposition. Transport and magnetic properties change in a non-linear way with the increase in the CeO2 content. The LSMC2 composition showed enhanced electronic conductivity and magnetic characteristics. Metallic type conductivity was observed for LSMC compositions with x  36 mol% CeO2 in a narrow temperature range of 770–900 °C. A small degree of substitution of Ce into LSM was found to change structural, magnetic and electrical properties.  相似文献   

17.
In the context, a modified sol-gel technology was afford to the synthesis of rare earth composite ceramic phosphors MM′O3/CeO2 and MM′O3/CeO2: Pr3+ (M = Ca, Sr; M′ = Ti, Zr) with multicomponent hybrid precursors were composed. The micromorphology, particle size and photoluminescence properties were studied with XRD, SEM and luminescent spectroscopy in detail. Both XRD and SEM indicated the particle sizes were in the submicrometer range of 100 ∼ 300 nm. The photoluminescence for these ceramic phosphors were studied in details with the different component of host (molecular ratio of Sr, Ca and Ti, Zr), presenting a broad spectral band in the visible blue-violet region with the maximum excitation peak at 449 nm and a wide emission range with a maximum peak at 619 nm, which was ascribed to be the characteristic transition of Pr3+ (1D23H4). These phosphors can be expected for visible light conversion (blue → red) materials. Especially it can be found that the introduction of CeO2 can enhance the luminescence intensity of MM′O3 and MM′O3: Pr3+.  相似文献   

18.
According to the aim to compose combinatorial material by adsorption of carbon nanotubes onto the structured CeO2 surface the interaction of the armchair (5,5) and zigzag (8,0) nanotubes with the (0 0 1) and (1 1 1) surfaces of CeO2 islands have been investigated by theoretical methods. The thermodynamics of the adsorption were studied at the low surface coverage region. The interaction energy between the nanotube and the different CeO2 surfaces shows significant increase when the size of the interface reaches 7–8 unit cells of CeO2 and it remains unchanged in the larger interface region. However, the entropy term of the adsorption is significantly high when the distances of CeO2 islands are equal to 27 nm (adsorption of armchair (5,5) nanotube) or 32 nm (adsorption of zigzag (8,0) nanotube). This property supports adsorption of nanotubes onto CeO2 surfaces which possesses a very specific surface morphology. A long-wave vibration of nanotubes was identified as background of this unexpected phenomenon. This observation could be applicable in the development of such procedures where the nanotube adsorption parallel to the surface is aimed to perform.  相似文献   

19.
A photonic crystal fiber sensor based on differential optical absorption spectroscopy for mixed gas detection is presented. In such sensor, hollow core photonic crystal fiber is utilized as gas cell and the feasibility for gas detection is verified by experiment. The components concentration of mixed gas NH3 and C2H2 are measured and the detection sensitivity is 143 ppmv.  相似文献   

20.
Using a low-cost hydrothermal method, we demonstrated the fabrication of phase pure rutile phase high-density vertically aligned TiO2 nanorods-based catalyst-free hydrogen (H2) gas sensor. The synthesized TiO2 nanorods on FTO are decorated with the aluminum interdigitated electrode pattern for electrical measurements. TiO2 nanorods-based hydrogen sensor showed the optimum response of ∼53.18% at 150 ppm H2 concentration relative to air at 100 °C. The measured response and recovery time of TiO2 nanorods are 85 and 620 s, respectively. The TiO2 nanorods-based H2 gas sensor showed a relatively better response, good reproducibility, and stability at moderate temperatures, i.e., 50 and 100 °C. The electrochemical impedance measurements showed a small variation in the surface characteristics of TiO2 nanorods before and after exposing H2 gas. The carrier lifetime at 50 °C and 100 °C at 150 ppm are 5 μs and 3 μs, respectively. Interestingly, H2 selectivity is also observed against H2S, CO, and NH3 gases, suggesting that high-density vertically aligned TiO2 nanorods can be a good candidate for efficient hydrogen sensing at relatively low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号