首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

2.
Thirteen‐ to eighteen‐membered lactones were synthesized by ring‐closing olefin‐metathesis reactions of bis‐olefins with heterogeneous Grubbs‐supported ionic‐liquid catalysts (SILCs), in which homogeneous Grubbs catalysts were confined in pores of alumina with the aid of an ionic liquid. The Grubbs‐SILCs exhibited higher catalytic performance than their homogeneous counterparts and could be repeatedly recovered by simple filtration and re‐used several times.  相似文献   

3.
Novel star‐shaped hard–soft triblock copolymers, 4‐arm poly(styrene)‐block‐poly [poly(ethylene glycol) methyl ethyl methacrylate]‐block‐poly{x‐[(4‐cyano‐4′‐biphenyl) oxy] alkyl methacrylate} (4PS‐PPEGMA‐PMAxLC) (x = 3, 10), with different mesogen spacer length are prepared by atom‐transfer radical polymerization. The star copolymers comprised three different parts: a hard polystyrene (PS) core to ensure the good mechanical property of the solid‐state polymer, and a soft, mobile poly[poly(ethylene glycol) methyl ethyl methacrylate] (PPEGMA) middle sphere responsible for the high ionic conductivity of the solid polyelectrolytes, and a poly{x‐[(4‐cyano‐4′‐biphenyl)oxy]alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star‐shaped hard–soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nanoscale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer 4PS‐PPEGMA‐PMA10LC shows ionic conductivity value of 1.3 × 10?4 S cm?1 (25 °C) after annealed from liquid crystal state, which is higher than that of 4PS‐PPEGMA electrolyte without mesogen groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341–4350  相似文献   

4.
The Biginelli reaction between an aromatic aldehyde, ethyl acetoacetate, and urea – catalyzed by polymer‐supported, re‐usable, room‐temperature ionic liquids (RTIL) such as 1b – was shown to efficiently proceed in glacial AcOH at 100° to afford the corresponding pyrimidine‐5‐carboxylates 3 in yields up to 99% within 2 h (Table 2). The catalyst(s) could be reused at least five times, basically without loss of activity, which makes this transformation not only straight‐forward, but also considerably less expensive compared to methods involving classical RTIL catalysts.  相似文献   

5.
An effective high‐speed countercurrent chromatography method was successfully established by using ionic liquids as the modifier of the two‐phase solvent system. Adding a small amount of ionic liquids significantly shortens the separation time and improves the separation efficiency. The conditions of ionic‐liquid‐modified high‐speed countercurrent chromatography including solvent systems, types and content of added ionic liquids, and ionic liquids posttreatment were investigated. The established method was successfully applied to separate alkaloids from lotus leaves using a two‐phase solvent system composed of petroleum ether/ethyl acetate/methanol/water/[C4mim][BF4] (1:5:1:5:0.15, v/v/v/v/v). Four alkaloids pronuciferine (1.7 mg), N‐nornuciferine (4.3 mg), nuciferine (3.1 mg), and roemerine (2.1 mg) were obtained with the purities of 90.53, 92.25, 99.86, and 98.63%, respectively, from 100 mg crude extract of lotus leaves. The results indicated that the ionic‐liquid‐modified high‐speed countercurrent chromatography method was suitable for alkaloid separation from lotus leaves and would be a promising method for the separation of alkaloids from other natural products.  相似文献   

6.
A novel manual‐shaking‐ and ultrasound‐assisted surfactant‐enhanced emulsification microextraction method was developed for the determination of three fungicides in juice samples. In this method, the ionic liquid, 1‐ethyl‐3‐methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, instead of a volatile organic solvent was used as the extraction solvent. The surfactant, NP‐10, was used as an emulsifier to enhance the dispersion of the water‐immiscible ionic liquid into an aqueous phase, which accelerated the mass transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid–liquid microextraction methods was not necessary. In addition, manual shaking for 15 s before ultrasound to preliminarily mix the extraction solvent and the aqueous sample could greatly shorten the time for dispersing the ionic liquid into aqueous solution by ultrasound irradiation. Several experimental parameters affecting the extraction efficiency, including type and volume of extraction solvent, type and concentration of surfactant, extraction time, and pH, were optimized. Under the optimized conditions, good linearity with the correlation coefficients (γ) higher than 0.9986 and high sensitivity with the limit of detection ranging from 0.4 to 1.6 μg/L were obtained. The average recoveries ranged from 61.4 to 86.0% for spiked juice, with relative standard deviations from 1.8 to 9.7%. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of the target fungicides in juice samples.  相似文献   

7.
An efficient one‐pot synthesis of 5‐(trifluoromethyl)‐4,7‐dihydro‐7‐aryl‐[1,2,4]triazolo[1,5‐a]pyrimidine derivatives was performed via the reaction of aryl aldehyde, 3‐amino‐1,2,4‐triazole and ethyl 4,4,4‐trifluoro‐3‐oxobutanoate or 4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dione in ionic liquid. This method has the advantages of short synthetic route, operational simplicities, mild reaction conditions, high yields and eco‐friendliness.  相似文献   

8.
In continuation of research to explore the applied potential of DMF‐like ionic liquid, the ionic liquid version of N,N‐dimethyliminiumchloride (Vilsmier reagent) has been synthesized from DMF‐like ionic liquid and tested effectively for its capacity to achieve more useful organic transformations. The results show that DMF‐like ionic liquid is world's first task specific ionic liquid which has catalyzed numerous diverse type of reaction and is multipurpose in its application. Thus a new term for this DMF‐like ionic liquid has been coined that is DMF‐like "multipurpose" ionic liquid.  相似文献   

9.
Novel guanidinium ionic liquid‐grafted rigid poly(p‐phenylene) (PPPIL) microspheres have been developed for metal scavenging and catalysis. The noble‐metal nanoparticles supported on the microspheres surface can be used as efficient heterogeneous catalysts. The combination of nanoparticles and ionic liquid fragments on the microsphere surfaces enhance the activity and durability of the catalyst. The PPPIL ? Pd0 catalyst has been tested in the Suzuki cross‐coupling reaction, and exhibits much higher catalytic activity than Pd catalysts supported on porous polymer matrices. The PPPIL ? Pd0 catalyst can be recycled at least for nine runs without any significant loss of activity. The present approach may, therefore, have potential applications in transition‐metal‐nanocatalyzed reactions.  相似文献   

10.
Propagation rate coefficients, kp, of methyl methacrylate (MMA) and glycidyl methacrylate (GMA) homopolymerizations were measured at ambient pressure in four ionic liquids (ILs): 1‐ethyl‐3‐methylimidazolium ([emim]) ethyl sulfate and [emim] hexyl sulfate as well as butyl‐3‐methylimidazolium ([bmim]) hexafluorophosphate and [bmim] tetrafluoroborate via the pulsed‐laser polymerization size‐exclusion chromatography technique. In passing from bulk polymerization at 40 °C polymerization in IL solution containing 20 vol % monomer, kp is enhanced by up to a factor of 4 with MMA and by a factor of 2 with GMA. This enhancement of kp primarily results from a lowering of activation energy upon partial replacement of monomer by ionic liquid species. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1460–1469, 2008  相似文献   

11.
The separation of a compound of interest from its structurally similar homologues to produce high‐purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic‐liquid‐based ultrasound‐assisted extraction and the subsequent screening and isolation of potential α‐glucosidase inhibitors via ultrafiltration and semipreparative high‐performance liquid chromatography. Ionic‐liquid‐based ultrasound‐assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis . The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1‐ethyl‐3‐methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α‐glucosidase inhibitors from B. chinensis , followed by the application of semipreparative high‐performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α‐glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high‐performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis .  相似文献   

12.
The 1‐{[(1H‐1,2,3‐Triazol‐4‐yl)methoxy]phenyl}‐1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives 5 were synthesized by a simple and efficient method, i.e., by the four‐component, one‐pot condensation reaction of phthalohydrazide 4 , a (propargyloxy)benzaldehyde 1 , an active methylene compound 3 (malononitrile or ethyl cyanoacetate), and an azide 2 in the presence of Cu(OAc)2/sodium L ‐ascorbate as catalyst and 1‐methyl‐1H‐imidazolium trifluoroacetate ([Hmim](CF3COO)) as an ionic‐liquid medium in good to excellent yields (Scheme 1).  相似文献   

13.
An ionic liquid, 1‐ethyl‐3‐(3‐ethyl‐3‐oxetanylmethyl)imidazolium bis(trifluoromethanesulfonyl)imide (OXImTFSI), was synthesized, and its cationic polymerization was examined. The heating of a mixture of 1‐ethylimidazole and 3‐chloromethyl‐3‐ethyloxetane at 90 °C for 48 h yielded 1‐ethyl‐3‐(3‐ethyl‐3‐oxetanylmethyl)imidazolium chloride, which was transformed to a room‐temperature ionic liquid, OXImTFSI, by ion exchange with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). This ionic liquid was polymerized using boron trifluoride ethyl ether complex as a catalyst to give polyOXImTFSI. Five percent weight loss temperature (Td5) of polyOXImTFSI evaluated by thermal gravimetric analysis was 409 °C, indicating the high thermal stability. Glass transition temperature (Tg) of the polymer evaluated by differential scanning calorimetry was ?19 °C, indicating the high flexibility of the material. Ionic conductivity of polyOXImTFSI was determined to be 1.86 × 10?8 S/cm at 23 °C, which was far lower than that of the OXImTFSI monomer (5.05 × 10?4 S/cm). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2986–2990  相似文献   

14.
A method of reversed‐phase ion‐pair solid‐phase extraction combined with ion chromatography for determination of pyrrolidinium ionic liquid cations (N‐methyl‐N‐ethyl pyrrolidinium, N‐methyl‐N‐propyl pyrrolidinium, and N‐methyl‐N‐butyl pyrrolidinium) in water samples was developed in this study. First, ion‐pair reagent sodium heptanesulfonate was added to the water samples after static, centrifugation and filteration. Then, pyrrolidinium cations in the samples were enriched and purified by a reversed‐phase solid‐phase extraction column, and eluted from the column with methanol aqueous solution as eluent. Finally, the eluate collected was analyzed by ion chromatography. The separation and direct conductivity detection of these pyrrolidinium cations by ion‐exchange column using 1.0 mM methanesulfonic acid (in water)/acetonitrile (97:3, v:v) as mobile phase was achieved within 10 min. By using this method, pyrrolidinium cations in Songhua River and Hulan River were successfully extracted with the recoveries ranging from 74.2 to 97.1% and the enrichment factor assessed as 60. Pyrrolidinium cations with the concentration of 0.001?0.03 mg/L can be enriched and detected in the water samples. The developed method for the determination of pyrrolidinium ionic liquid cations in water samples is simple and reliable, which provides a reference for the study of the potential impact of ionic liquids on the environment.  相似文献   

15.
We have developed a synergic microextraction procedure based on ionic liquid for the pre‐concentration and determination of glucocorticoids in water samples. Using nonionic surfactant Triton X‐100 (TX‐100) as synergic reagent, 1‐butyl‐3‐methylimidazolium hexa‐fluorophosphate accomplished extraction rapidly without heating in water bath. One key property of ionic liquids that highlights their potential is their wide liquid temperature range. The improved extraction was named as ionic liquid supported vortex‐assisted synergic microextraction. Compared with the traditional liquid–liquid extraction and cloud point extraction, ionic liquid supported vortex‐assisted synergic microextraction was accomplished in 8 min with considerably high recovery. The proposed method greatly improved the sensitivity of HPLC for the determination of glucocorticoids. The results obtained indicated a good linearity with the correlation coefficient of 0.997 over the range of 0.6–300 ng/mL and high sensitivity with LODs of 4.11, 9.19, and 7.50 ng/mL for hydrocortisone butyrate, beclomethasone dipropionate, and nandrolone phenylpropionate, respectively. The RSD of the method was 1.57–1.81% (n = 6) with enrichment factor of 99.85, and good recovery (≥97.24%). The method was successfully applied to the determination of glucocorticoids in mineral water, water of Dianchi lake, and tap water samples.  相似文献   

16.
Macleaya cordata (Willd) R. Br. is a medicinal plant. The most important bioactive compounds of M. cordata are alkaloids that have many biological activities including antifungal, anti‐inflammatory, and antitumor. In this study, an ionic‐liquid‐modified high‐speed counter‐current chromatography method was established to obtain alkaloids from the fruits of M. cordata. The conditions of ionic‐liquid‐modified high‐speed counter‐current chromatography, including solvent systems, the content of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate [C4mim][BF4]), and the posttreatment of the ionic liquid, were investigated. Five alkaloids protopine, allocryptopine, sanguinarine, 8‐O‐demethylchelerythrine, and chelerythrine were separated from the extract of the fruits using a high speed counter‐current chromatography with two‐phase solvent system composed of dichloromethane/methanol/0.3 mol/L hydrochloric acid aqueous solution/[C4mim][BF4] (4:2:2:0.015, v/v). Their purities were 96.33, 95.56, 97.94, 96.22, and 97.90%, respectively. The results indicated that a small amount of ionic liquids as modifier of the two‐phase solvent system could shorten the separation time and improve the separation efficiency of the alkaloids from the fruits. The ionic‐liquid‐modified high‐speed counter‐current chromatography would provide a feasible way for highly effective separation of alkaloids from natural products.  相似文献   

17.
Magnetic carbon nanotube‐supported imidazolium ionic liquid (CNT‐Fe3O4‐IL) was synthesized and investigated using various characterization techniques, including Fourier transform infrared and Raman spectroscopies, X‐ray diffraction, vibrating sample magnetometry, scanning and transmission electron microscopies, and thermogravimetric and differential thermal analyses. In order to synthesize the CNT‐Fe3O4‐IL nanocomposites, Fe3O4‐decorated multi‐walled CNTs were modified with 1‐methyl‐3‐(3‐trimethoxysilylpropyl)‐1H‐imidazol‐3‐ium chloride. This catalytic system was found to be a highly stable, active, reusable and solid‐phase catalyst for the synthesis of 2‐aminothiazoles via the one‐pot reaction of ketone, thiourea and N‐bromosuccinimide under mild conditions. Immobilized magnetic ionic liquid catalysis combines the advantages of ionic liquid media with magnetic solid support nanomaterials which enables the application of nanotechnology and green chemistry in chemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The IR and Raman spectra and conformations of the ionic liquid 1‐ethyl‐3‐methyl‐1H‐imidazolium tetrafluoroborate, [EMIM] [BF4] ( 6 ), were analyzed within the framework of scaled quantum mechanics (SQM). It was shown that SQM successfully reproduced the spectra of the ionic liquid. The computations revealed that normal modes of the EMIM+?BF ion pair closely resemble those of the isolated ions EMIM+ and BF , except for the antisymmetric BF stretching vibrations of the anion, and the out‐of‐plane and stretching vibrations of the H? C(2) moiety of the cation. The most plausible explanation for the pronounced changes of the latter vibrations upon ion‐pair formation is the H‐bonding between H? C(2) and BF . However, these weak H‐bonds are of minor importance compared with the Coulomb interactions between the ions that keep them closely associated even in dilute CD2Cl2 solutions. According to the ‘gas‐phase’ computations, in these associates, the BF anion is positioned over the imidazolium ring of the EMIM+ cation and has short contacts not only with the H? C(2) of the latter, but also with a proton of the Me? N(3) group.  相似文献   

19.
One pot three component reaction of 4‐hydroxy‐6‐methylpyran‐2‐one, 3‐methoxy benzaldehyde, and malononitrile in water using protic ionic liquid as a catalyst at room temperature afforded pyrano[4,3‐b]pyran derivatives. Protic ionic liquid has been proved to be an efficient and mild catalyst for the synthesis of pyrano[4,3‐b]pyran scaffolds due to their highly polar nature. The notable aspects of protic ionic liquid are easy availability, improved reaction rates, high product yields, simple workup procedure, recyclability, and reusability. Molecules docking studies have been performed on enzyme enoyl‐ACP‐reductase from Mycobacterium tuberculosis. The molecular docking simulation indicated plausible π‐alkyl and alkyl‐alkyl interactions between the amino acids and scaffolds. The synthesized derivatives have been evaluated for their in vitro antituberculotic activity against Mtuberculosis H37RV strain using Microplate Alamar Blue Assay method. Together, biological activity data and docking data showed that the tested scaffolds exhibited excellent antituberculotic activity.  相似文献   

20.
The paper reports the results of a study carried out to evaluate the use of three 1‐alkyl‐3‐methylimidazolium‐based ionic liquids as non‐covalent coating agents for bare fused‐silica capillaries and additives of the electrolyte solutions (BGE) for CE of basic proteins in the co‐EOF separation mode. The three ionic liquids are differentiated from each other by the length of the alkyl group on the imidazolium cation, consisting of either an ethyl, butyl or octyl substituent, whereas tetrafluoroborate is the common anionic component of the ionic liquids. Coating the capillary with the ionic liquid resulted in improved peak shape and protein separation, while the EOF was maintained cathodic. This indicates that each ionic liquid is effective at masking the protein interaction sites on the inner surface of the capillary, also when its adsorption onto the capillary wall has not completely neutralized all the negative charges arising from the ionization of the silanol groups and the ionic liquid is not incorporated into the BGE employed for separation. Using the coated capillaries with BGE containing the ionic liquid employed for the coating, at concentration low enough to maintaining the EOF cathodic, both peak shape and protein separation varied to different extents, based on the particular ionic liquid used and its concentration. Fast and efficient separation of the model basic protein mixture in co‐electroosmotic CE is obtained with the 1‐butyl‐3‐methylimidazolium tetrafluoroborate coated capillary and 100 mM acetate buffer (pH 4.0) containing 4.4 mM 1‐butyl‐3‐methylimidazolium tetrafluoroborate as the BGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号