首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Steady state crack propagation problems of elastic-plastic materials in Mode I, plane strain under small scale yielding conditions were investigated with the aid of the finite element method. The elastic-perfectly plastic solution shows that elastic unloading wedges subtended by the crack tip in the plastic wake region do exist and that the stress state around the crack tip is similar to the modified Prandtl fan solution. To demonstrate the effects of a vertex on the yield surface, the small strain version of a phenomenological J2, corner theory of plasticity (Christoffersen, J. and Hutchinson, J. W. J. Mech. Phys. Solids,27, 465 C 1979) with a power law stress strain relation was used to govern the strain hardening of the material. The results are compared with the conventional J2 incremental plasticity solution. To take account of Bauschinger like effects caused by the stress history near the crack tip, a simple kinematic hardening rule with a bilinear stress strain relation was also studied. The results are again compared with the smooth yield surface isotropic hardening solution for the same stress strain curve. There appears to be more potential for steady state crack growth in the conventional J2 incremental plasticity material than in the other two plasticity laws considered here if a crack opening displacement fracture criterion is used. However, a fracture criterion dependent on both stress and strain could lead to a contrary prediction.  相似文献   

2.
An exact asymptotic analysis is presented of the stress and deformation fields near the tip of a quasistatically advancing plane strain tensile crack in an elastic-ideally plastic solid. In contrast to previous approximate analyses, no assumptions which reduce the yield condition, a priori, to the form of constant in-plane principal shear stress near the crack tip are made, and the analysis is valid for general Poisson ratio ν. Specific results are given for ν = 0.3 and 0.5, the latter duplicating solutions in previous work by L.I. Slepyan, Y.-C. Gao and the present authors. The crack tip field is shown to divide into five angular sectors of four different types ; in the order in which these sweep across a point in the vicinity of the advancing crack, they are : two plastic sectors which can be described asymptotically (i.e., as r → 0, where r is distance from the crack tip) in slip-line terminology as ‘constant stress’ and ‘centered fan’ sectors, respectively ; a plastic sector of non-constant stress which cannot be described asymptotically in terms of slip lines; an elastic unloading sector; and a trailing plastic sector of the same type as that directly preceding the elastic sector. Further, these four different sector types constitute the full set of asymptotically possible solutions at the crack tip. As is known from prior work, the plastic strain accumulated by a material point passing through such a moving ‘centered fan’ sector is O(ln r) as r → 0 ; it is proved in the present work that the plastic strain accumulated by a material point passing through the ‘constant stress’ sector ahead of a growing crack must be less singular than In r as r → 0. As suggested also in earlier studies, the rate of increase of opening gap δ at a point currently at a distance r behind, but very near, the crack tip is given for crack advance under contained yielding by
δ? = αJ?σ0+β(σ0E)a? ln(Rr)
where a is crack length, σ0 is tensile yield strength, E is Young's modulus, J is the value of the J-integral taken in surrounding elastic material, and the parameters α and R are undetermined by the asymptotic analysis. The exact solution for ν = 0.3 gives β = 5.462, which agrees very closely with estimates obtained from finite element solutions. An approximate analysis based on use of slip line representations in all plastic sectors is outlined in the Appendix.  相似文献   

3.
A solution for Model-I plane strain crack tip fields in a bi-linear elastic–plastic material is presented. The elastic–plastic Poisson's ratio is introduced to characterize the influence of elastic deformation on the near tip constraint. Attention is focused on the distribution of elastic/plastic strain energy in the sensitive region of the forward sector ahead of a crack tip. The present study shows that the elastic strain energy can be higher than the plastic strain energy in this sensitive sector while large amount of the plastic strain energy develops outside this sector around the crack tip. The effect of elastic deformation in this sensitive region on the structure of crack-tip fields is considerable and the assumption in some important solutions for crack-tip fields reported in literature that the elastic deformation is small and can be ignored is therefore not physically reasonable. Besides, finite element analysis is carried out to validate the analytical solution and good agreement between them is found. It is seen that the present solution with T-stress can properly describe the crack-tip fields under various constraints for different specimens and an analytical relation is established between the critical value of J-integral, Jc, and T-stress for elastic–plastic fracture.  相似文献   

4.
Analyses of the stress and strain fields around smoothly-blunting crack tips in both non-hardening and hardening elastic-plastic materials, under contained plane-strain yielding and subject to mode I opening loads, have been carried out by use of a finite element method suitably formulated to admit large geometry changes. The results include the crack-tip shape and near-tip deformation field, and the crack-tip opening displacement has been related to a parameter of the applied load, the J-integral. The hydrostatic stresses near the crack tip are limited due to the lack of constraint on the blunted tip, limiting achievable stress levels except in a very small region around the crack tip in power-law hardening materials. The J-integral is found to be path-independent except very close to the crack tip in the region affected by the blunted tip. Models for fracture are discussed in the light of these results including one based on the growth of voids. The rate of void-growth near the tip in hardening materials seems to be little different from the rate in non-hardening ones when measured in terms of crack-tip opening displacement, which leads to a prediction of higher toughness in hardening materials. It is suggested that improvement of this model would follow from better understanding of void-void and void-crack coalescence and void nucleation, and some criteria and models for these effects are discussed. The implications of the finite element results for fracture criteria based on critical stress or strain, or both, is discussed with respect to transition of fracture mode and the angle of initial crack-growth. Localization of flow is discussed as a possible fracture model and as a model for void-crack coalescence.  相似文献   

5.
Steady-state quasi-static growth of a crack in the anti-plane shear mode through an elastic-plastic material is analyzed. The material is non-hardening and small-scale yielding conditions are assumed. The essential feature of the model is that the active plastic-zone is assumed to be a pair of discrete lines emanating from the crack tip out of the crack plane on which a suitable yield condition is satisfied. An exact solution is obtained for the plastic strain left in the wake of this active line plastic-zone. The extent of the plastic zone from the tip is determined to be 0.071 (kτ0)2 where k and τ0 are the remote elastic stress intensity factor and the shear flow stress, respectively, and it is found that 36% of the elastic energy flowing into the crack-tip region during growth is dissipated through plastic work and 64% is trapped as residual elastic energy in the plastic-zone wake.  相似文献   

6.
One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during many cycles, as severe mesh distortion at the crack-tip results from the huge geometry changes developing during the cyclic plastic straining. In the present numerical studies, based on an elastic-perfectly plastic material model, crack growth computations are continued up to 200 full cycles by using remeshing at several stages of the plastic deformation. Three different values of the load ratio R=Kmin/Kmax are considered. It is shown that the crack-tip opening displacement, CTOD, typically undergoes a transient behaviour, with no crack closure during many cycles, before a steady-state cycling with crack closure at the tip starts to gradually develop.  相似文献   

7.
A Modified version of the Dugdale-Bilby-Cottrell-Swinden (DBCS) model simulating the effect of plasticity at the tip of a crack in an infinite region was used by kfouri and rice (1978) to calculate the crack separation energy-rate GΔ corresponding to a finite crack growth step Δa during plane strain mode I crack extension. The loading consisted of a remote uniaxial tension σp applied normally to the plane of the crack. Using Rice's path-independent integral J to characterize the applied load in the crack tip region, and assuming the length R of the crack tip plastic zone to be small compared with the length of the crack, an analytical expression was derived relating the ratios (J/GΔ) and (2a/R) for small values of (2a/R). The analytical solution was incomplete in itself in that the value assumed in the plastic region of the DBCS model for the normal stress Y acting on the extending crack surfaces was the product of the yield stress in uniaxial tension σY and an unknown parameter C, the value of which depends on the effect of the local hydrostatic stresses in the case of plane strain conditions. The analytical solution was compared with a numerical solution obtained from a plane strain elastic-plastic finite element analysis on a centre-cracked plate (CCP) of material obeying the von Mises yield criterion. The value used for the yield stress was 310 MN/m2 and moderate isotropic linear hardening was applied with a tangent modulus of 4830 MN/m2. A uniaxial tension σp was applied on the two appropriate sides of the plate. The comparisons showed that the analytical and finite element solutions were mutually consistent and they enabled the value of C to be established at 1.91. In the present paper similar comparisons are made between the analytical solution and the finite element solutions for the CCP of the same material under different biaxial modes of loading. By assuming further that the form of the analytical solution does not depend on the details of the geometry and of the loading at remote boundaries, a comparison has also been made with the results of a finite element analysis on a compact tension specimen (CTS) made of the same material as the CCP. The different values of C obtained in each case are consistent with investigations by other authors on the effect of load biaxiality on crack tip plasticity.  相似文献   

8.
Fracture toughness of metals depends strongly on the state of stress near the crack tip. The existing standards (like R-6, SINTAP) are being modified to account for the influence of stress triaxiality in the flaw assessment procedures. These modifications are based on the ability of so-called ‘constraint parameters’ to describe near tip stresses. Crack tip stresses in homogeneous fracture specimens are successfully described in terms of two parameters like JQ or JT. For fracture specimens having a weld center crack, strength mismatch ratio between base and weld material and weld width are the additional variables, along with the magnitude of applied loading, type of loading, and geometry of specimen that affect the crack tip stresses. In this work, a novel three-parameter scheme was proposed to estimate the crack tip opening stress accounting for the above-mentioned variables. The first and second parameters represent the crack tip opening stress in a homogeneous fracture specimen under small-scale yielding and are well known. The third parameter accounts for the effect of constraint developed due to weld strength mismatch. It comprises of weld strength mismatch ratio (M, i.e. ratio of yield strength of weld material to that of base material), and a plastic interaction factor (Ip) that scales the size of the plastic zone with the width of the weld material. The plastic interaction factor represents the degree of influence of weld strength mismatch on crack tip constraint for a given mismatch ratio. The proposed scheme was validated with detailed FE analysis using the Modified Boundary Layer formulation.  相似文献   

9.
The influence of inertia on the stress and deformation fields near the tip of a crack growing in an elastic-plastic material is studied. The material is characterized by the von Mises yield criterion and J2 flow theory of plasticity. The crack grows steadily under plane strain conditions in the tensile opening mode. Features of the stress and deformation state at points near the moving crack tip are described for elastic-perfectly plastic response and for several crack propagation speeds. It is found that inertia has a significant effect on the elastic-plastic response of material particles near the crack tip, and that elastic unloading may occur behind the crack tip for higher speeds. The relationship between the applied crack driving force, represented by a remote stress intensity factor, and the crack tip speed is examined on the basis of a critical crack tip opening angle growth criterion. The calculated result is compared with dynamic fracture toughness versus crack speed data for a 4340 steel.  相似文献   

10.
Strains, computed by the finite element method, are evaluated and compared to an experimentally determined strain field. The analyzed low-density paper has been designed to ensure bond–breakage as the dominating damage mechanism and the paper material is approximately in-plane isotropic. An optical non-contact displacement measuring system has been used in fracture tests to determine the strain field in the crack-tip region of a pre-fabricated crack. Additionally, acoustic emission monitored tensile tests have been conducted to determine onset and evolution of damage processes and thereby enabling calibration of required constitutive parameters. The results suggest that the investigated paper material can tolerate significantly higher strains than what is predicted by a classic elastic–plastic J2-flow theory. Immediately before onset of the final fracture (i.e., localization), the experimental measured normal strain in the near-tip region is around 60% higher than the computed strain when using exclusively an elastic–plastic theory for the corresponding load while the strain computed utilizing a non-local damage theory is of the same order of magnitude as the experimentally measured strain. Hence, it seems essential to include a non-local continuum theory to describe strains in the near-tip region quantitatively correct for paper materials. It is demonstrated that path independence of the well-known J-integral does not prevail for this class of material models. Only for the special situation of a homogenous damage field in the crack-tip region may the stress and strain fields be described by the well-known HRR-solutions.  相似文献   

11.
Relationships between the J-integral and the crack opening displacement δt are obtained by exploiting the dominance of the Hutchinson-Rice-Rosengren singularity in the crack-tip region. The coefficient dn that relates J to δt, is dependent on the material deformation properties and is independent of crack configuration under small-scale yielding conditions. For low hardening materials, dn appears to be configuration dependent in the fully yielded state. Similarly, the slope of the J-resistance curve is relatable to an operationally defined crack opening angle if J-controlled crack growth conditions are met. These relationships are corroborated by finite element results for the complete regime of elastic-plastic deformation and experimental data for A533B steels, HY-80 steels and several other ductile metals.  相似文献   

12.
The paper analyzes the frictional sliding crack at the interface between a semi-infinite elastic body and a rigid one. It gives solutions in complex form for non-homogeneous loading at infinity and explicit solutions for polynomial loading at the interface. It is found that the singularities at the crack tips are different and that they are related to distinct kinematics at the crack tips. Firstly, we postulate that the geometry of the equilibrium crack with crack-tip positions b and a is determined by the conditions of square integrable stresses and continuous displacement at both crack tips. The crack geometry solution is not unique and is defined by any compatible pair (b,a) belonging to a quasi-elliptical curve. Then we prove that, for an equilibrium crack under given applied load, the “energy release rate” Gtip, defined at each crack tip by the Jε-integral along a semi-circular path, centered at the crack tip, with vanishing radius ε, vanishes. For arbitrarily shaped paths embracing the whole crack, with end points on the unbroken zone, the J-integral is path-independent and has the significance of the rate, with respect to the crack length, of energy dissipated by friction on the crack.  相似文献   

13.
Recent finite-element results by S.G. Larsson and A.J. Carlsson suggest a limited range of validity to the ‘small scale yielding approximation’, whereby small crack tip plastic zones are correlated in terms of the elastic stress intensity factor. It is shown with the help of a model for plane strain yielding that their results may be explained by considering the non-singular stress, acting parallel to the crack at its tip, which accompanies the inverse square-root elastic singularity. Further implications of the non-singular stress term for crack tip deformations and fracturing are examined. It is suggested that its effect on crack tip parameters, such as the opening displacement and J-integral, is less pronounced than its effect on the yield zone size.  相似文献   

14.
15.
The two-dimensional stress field at the tip of a crack in a plastically orthotropic material is analyzed by the total deformation theory of plasticity in conjunction with the J-integral. A model of a plastically orthotropic material is constructed by the use of the theory proposed by R. Hill (1950) and the uniaxial stress-strain relation suggested by W. Ramberg and W.R. Osgood (1943). It is found that the stresses in the vicinity of the crack tip have a singularity of the same order as that in the case of isotropic materials, but their amplitudes are greatly influenced by the plastic orthotropy. Numerical work is carried out for two typical metals, and the effect of the plastic orthotropy is examined for the stress field, the crack opening displacement, the strain energy density, and the shape of the elastic-plastic boundary.  相似文献   

16.
17.
Arbitrarily oriented crack near interface in piezoelectric bimaterials is considered. After deriving the fundamental solution for an edge dislocation near the interface, the present problem can be expressed as a system of singular integral equations by modeling the crack as continuously distributed edge dislocations. In the paper, the dislocations are described by a density function defined on the crack line. By solving the singular integral equations numerically, the dislocation density function is determined. Then, the stress intensity factors (SIFs) and the electric displacement intensity factor (EDIF) at the crack tips are evaluated. Subsequently, the influences of the interface on crack tip SIFs, EDIF, and the mechanical strain energy release rate (MSERR) are investigated. The J-integral analysis in piezoelectric bimaterals is also performed. It is found that the path-independent of J1-integral and the path-dependent of J2-integral found in no-piezoelectric bimaterials are still valid in piezoelectric bimaterials.  相似文献   

18.
The critical tearing energy and J-integral for initiation and rapid crack propagation at 22°C were determined for carbon black reinforced natural rubber. Tearing energies were 20 per cent and up to 100 per cent greater for initiation and rupture, respectively, and more scattered than the J values. Specimen geometry affects both fracture characterizing parameters because of the energy dissipated during deformation. However, the J-integral analysis can partition this energy between the crack tip region and the bulk of the specimen. Therefore, application of the J-integral concept for characterizing fracture of elastomers is promising.  相似文献   

19.
20.
OFHC copper specimens of 39 μm grain size were deformed to small strains (up to 8%) in tension, torsion and combined tension-torsion at 300 K and the resulting dislocation structures, distributions and densities were determined using transmission electron microscopy. Employing the von Mises yield criterion and the plastic-work hypothesis good agreement was obtained for the three testing conditions for (i) equivalent stress \?gs vs equivalent strain \?g3p curves, (ii) the dislocation structure, distribution and density ρ as a function of \?g3p, and (iii) \?gs as a function of ρ12. Furthermore, upon comparing the \?gs vs ρ12 curve for polycrystalline copper with the τRSS vs ρ12 curve for single crystals, an average Taylor factor M= (σ/τRSS) of approximately 3.2 was obtained, which is in good accord with that predicted theoretically for FCC metals. Almost equally good correlations for the stressstrain curves and for the dislocation density were obtained on the basis of maximum shear stress τmax and maximum shear strain γpmax as on the basis of \?gs and \?g3P. Therefore, the present results do not permit a positive decision on the question whether the dislocation density correlates better with \?gs and \?g3P or with τmax and γPmax.A single test in which the direction of straining in torsion was reversed yielded a density and distribution of dislocations (and a corresponding value of \?gs) equivalent to those that developed at a smaller strain in unidirectional straining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号