首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of inertia on the stress and deformation fields near the tip of a crack growing in an elastic-plastic material is studied. The material is characterized by the von Mises yield criterion and J2 flow theory of plasticity. The crack grows steadily under plane strain conditions in the tensile opening mode. Features of the stress and deformation state at points near the moving crack tip are described for elastic-perfectly plastic response and for several crack propagation speeds. It is found that inertia has a significant effect on the elastic-plastic response of material particles near the crack tip, and that elastic unloading may occur behind the crack tip for higher speeds. The relationship between the applied crack driving force, represented by a remote stress intensity factor, and the crack tip speed is examined on the basis of a critical crack tip opening angle growth criterion. The calculated result is compared with dynamic fracture toughness versus crack speed data for a 4340 steel.  相似文献   

2.
This paper discusses the crack driving force in elastic–plastic materials, with particular emphasis on incremental plasticity. Using the configurational forces approach we identify a “plasticity influence term” that describes crack tip shielding or anti-shielding due to plastic deformation in the body. Standard constitutive models for finite strain as well as small strain incremental plasticity are used to obtain explicit expressions for the plasticity influence term in a two-dimensional setting. The total dissipation in the body is related to the near-tip and far-field J-integrals and the plasticity influence term. In the special case of deformation plasticity the plasticity influence term vanishes identically whereas for rigid plasticity and elastic-ideal plasticity the crack driving force vanishes. For steady state crack growth in incremental elastic–plastic materials, the plasticity influence term is equal to the negative of the plastic work per unit crack extension and the total dissipation in the body due to crack propagation and plastic deformation is determined by the far-field J-integral. For non-steady state crack growth, the plasticity influence term can be evaluated by post-processing after a conventional finite element stress analysis. Theory and computations are applied to a stationary crack in a C(T)-specimen to examine the effects of contained, uncontained and general yielding. A novel method is proposed for evaluating J-integrals under incremental plasticity conditions through the configurational body force. The incremental plasticity near-tip and far-field J-integrals are compared to conventional deformational plasticity and experimental J-integrals.  相似文献   

3.
4.
A Modified version of the Dugdale-Bilby-Cottrell-Swinden (DBCS) model simulating the effect of plasticity at the tip of a crack in an infinite region was used by kfouri and rice (1978) to calculate the crack separation energy-rate GΔ corresponding to a finite crack growth step Δa during plane strain mode I crack extension. The loading consisted of a remote uniaxial tension σp applied normally to the plane of the crack. Using Rice's path-independent integral J to characterize the applied load in the crack tip region, and assuming the length R of the crack tip plastic zone to be small compared with the length of the crack, an analytical expression was derived relating the ratios (J/GΔ) and (2a/R) for small values of (2a/R). The analytical solution was incomplete in itself in that the value assumed in the plastic region of the DBCS model for the normal stress Y acting on the extending crack surfaces was the product of the yield stress in uniaxial tension σY and an unknown parameter C, the value of which depends on the effect of the local hydrostatic stresses in the case of plane strain conditions. The analytical solution was compared with a numerical solution obtained from a plane strain elastic-plastic finite element analysis on a centre-cracked plate (CCP) of material obeying the von Mises yield criterion. The value used for the yield stress was 310 MN/m2 and moderate isotropic linear hardening was applied with a tangent modulus of 4830 MN/m2. A uniaxial tension σp was applied on the two appropriate sides of the plate. The comparisons showed that the analytical and finite element solutions were mutually consistent and they enabled the value of C to be established at 1.91. In the present paper similar comparisons are made between the analytical solution and the finite element solutions for the CCP of the same material under different biaxial modes of loading. By assuming further that the form of the analytical solution does not depend on the details of the geometry and of the loading at remote boundaries, a comparison has also been made with the results of a finite element analysis on a compact tension specimen (CTS) made of the same material as the CCP. The different values of C obtained in each case are consistent with investigations by other authors on the effect of load biaxiality on crack tip plasticity.  相似文献   

5.
A solution for Model-I plane strain crack tip fields in a bi-linear elastic–plastic material is presented. The elastic–plastic Poisson's ratio is introduced to characterize the influence of elastic deformation on the near tip constraint. Attention is focused on the distribution of elastic/plastic strain energy in the sensitive region of the forward sector ahead of a crack tip. The present study shows that the elastic strain energy can be higher than the plastic strain energy in this sensitive sector while large amount of the plastic strain energy develops outside this sector around the crack tip. The effect of elastic deformation in this sensitive region on the structure of crack-tip fields is considerable and the assumption in some important solutions for crack-tip fields reported in literature that the elastic deformation is small and can be ignored is therefore not physically reasonable. Besides, finite element analysis is carried out to validate the analytical solution and good agreement between them is found. It is seen that the present solution with T-stress can properly describe the crack-tip fields under various constraints for different specimens and an analytical relation is established between the critical value of J-integral, Jc, and T-stress for elastic–plastic fracture.  相似文献   

6.
Jep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The J ep -integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The J epintegral possesses clearly clear physical meaning: (1) the value J ep tip evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of J ep farss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.  相似文献   

7.
An asymptotic crack-tip analysis of stress and strain fields is carried out for an antiplane shear crack (Mode III) based on a corner theory of plasticity. Because of the nonproportional loading history experienced by a material element near the crack tip in stable crack growth, classical flow theory may predict an overly stiff response of the elastic plastic solid, as is the case in plastic buckling problems. The corner theory used here accounts for this anomalous behavior. The results are compared with those of a similar analysis based on the J2 flow theory of plasticity.  相似文献   

8.
A closed-form asymptotic solution is provided for velocity fields and the nominal stress rates near the tip of a stationary crack in a homogeneously pre-stressed configuration of a nonlinear elastic, incompressible material. In particular, a biaxial pre-stress is assumed with stress axes parallel and orthogonal to the crack faces. Two boundary conditions are considered on the crack faces, namely a constant pressure or a constant dead loading, both preserving an homogeneous ground state. Starting from this configuration, small superimposed Mode I or Mode II deformations are solved, in the framework of Biot's incremental theory of elasticity. In this way a definition of an incremental stress intensity factor is introduced, slightly different for pressure or dead loading conditions on crack faces. Specific examples are finally developed for various hyperelastic materials, including the J2-deformation theory of plasticity. The presence of pre-stress is shown to strongly influence the angular variation of the asymptotic crack-tip fields, even if the nominal stress rate displays a square root singularity as in the infinitesimal theory. Relationships between the solution with shear band formation at the crack tip and instability of the crack surfaces are given in evidence.  相似文献   

9.
Analyses of the stress and strain fields around smoothly-blunting crack tips in both non-hardening and hardening elastic-plastic materials, under contained plane-strain yielding and subject to mode I opening loads, have been carried out by use of a finite element method suitably formulated to admit large geometry changes. The results include the crack-tip shape and near-tip deformation field, and the crack-tip opening displacement has been related to a parameter of the applied load, the J-integral. The hydrostatic stresses near the crack tip are limited due to the lack of constraint on the blunted tip, limiting achievable stress levels except in a very small region around the crack tip in power-law hardening materials. The J-integral is found to be path-independent except very close to the crack tip in the region affected by the blunted tip. Models for fracture are discussed in the light of these results including one based on the growth of voids. The rate of void-growth near the tip in hardening materials seems to be little different from the rate in non-hardening ones when measured in terms of crack-tip opening displacement, which leads to a prediction of higher toughness in hardening materials. It is suggested that improvement of this model would follow from better understanding of void-void and void-crack coalescence and void nucleation, and some criteria and models for these effects are discussed. The implications of the finite element results for fracture criteria based on critical stress or strain, or both, is discussed with respect to transition of fracture mode and the angle of initial crack-growth. Localization of flow is discussed as a possible fracture model and as a model for void-crack coalescence.  相似文献   

10.
The influence of strain hardening exponent on two-parameter J-Q near tip opening stress field characterization with modified boundary layer formulation and the corresponding validity limits are explored in detail. Finite element simulations of surface cracked plates under uniaxial tension are implemented for loads exceeding net-section yield. The results from this study provide numerical methodology for limit analysis and demonstrate the strong material dependencies of fracture parameterization under large scale yielding. Sufficient strain hardening is shown to be necessary to maintain J-Q predicted fields when plastic flow progresses through the remaining ligament. Lower strain hardening amplifies constraint loss due to stress redistribution in the plastic zone and increases the ratio of tip deformation to J. The onset of plastic collapse is marked by shape change and/or rapid relaxation of tip fields compared to those predicted by MBL solutions and thus defining the limits of J-Q dominance. A radially independent Q-parameter cannot be evaluated for the low strain hardening material at larger deformations within a range where both cleavage and ductile fracture mechanisms are present. The geometric deformation limit of near tip stress field characterization is shown to be directly proportional to the level of stress the material is capable of carrying within the plastic zone. Accounting for the strain hardening of a material provides a more adjusted and less conservative limit methodology compared to those generalized by the yield strength alone. Results from this study are of relevance to establishing testing standards for surface cracked tensile geometries.  相似文献   

11.
In this work, we propose a new criterion for mixed mode I-II crack initiation angles based on the characteristics of the plastic core region surrounding the crack tip. The shape and size of the plastic core region are thoroughly analyzed under different loading conditions and a new formulation for the non-dimensional variable radius of the core region is presented for mixed mode (KIKII) fracture. The proposed criterion states that the crack extends in the direction of the local or global minimum of the plastic core region boundary depending on the resultant stress state at the crack tip. The results show a well-defined correlation between the plastic core region characteristics and crack extension angles predicted by other criteria. The proposed criterion is formulated for various loading conditions and is compared with other available criteria against the limited available experimental data. It is shown that the proposed criterion provides a better agreement with the experimental data.  相似文献   

12.
Fracture toughness of metals depends strongly on the state of stress near the crack tip. The existing standards (like R-6, SINTAP) are being modified to account for the influence of stress triaxiality in the flaw assessment procedures. These modifications are based on the ability of so-called ‘constraint parameters’ to describe near tip stresses. Crack tip stresses in homogeneous fracture specimens are successfully described in terms of two parameters like JQ or JT. For fracture specimens having a weld center crack, strength mismatch ratio between base and weld material and weld width are the additional variables, along with the magnitude of applied loading, type of loading, and geometry of specimen that affect the crack tip stresses. In this work, a novel three-parameter scheme was proposed to estimate the crack tip opening stress accounting for the above-mentioned variables. The first and second parameters represent the crack tip opening stress in a homogeneous fracture specimen under small-scale yielding and are well known. The third parameter accounts for the effect of constraint developed due to weld strength mismatch. It comprises of weld strength mismatch ratio (M, i.e. ratio of yield strength of weld material to that of base material), and a plastic interaction factor (Ip) that scales the size of the plastic zone with the width of the weld material. The plastic interaction factor represents the degree of influence of weld strength mismatch on crack tip constraint for a given mismatch ratio. The proposed scheme was validated with detailed FE analysis using the Modified Boundary Layer formulation.  相似文献   

13.
In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom ωi are introduced in addition to the conventional three translational degrees of freedom ui. ωi is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l1. Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale.  相似文献   

14.
The J-integral based criterion is widely used in elastic–plastic fracture mechanics. However, it is not rigorously applicable when plastic unloading appears during crack propagation. One difficulty is that the energy density with plastic unloading in the J-integral cannot be defined unambiguously. In this paper, we alternatively start from the analysis on the power balance, and propose a surface-forming energy release rate (ERR), which represents the energy available for separating the crack surfaces during the crack propagation and excludes the loading-mode-dependent plastic dissipation. Therefore the surface-forming ERR based fracture criterion has wider applicability, including elastic–plastic crack propagation problems. Several formulae are derived for calculating the surface-forming ERR. From the most concise formula, it is interesting to note that the surface-forming ERR can be computed using only the stress and deformation of the current moment, and the definition of the energy density or work density is avoided. When an infinitesimal contour is chosen, the expression can be further simplified. For any fracture behaviors, the surface-forming ERR is proven to be path-independent, and the path-independence of its constituent term, so-called Js-integral, is also investigated. The physical meanings and applicability of the proposed surface-forming ERR, traditional ERR, Js-integral and J-integral are compared and discussed. Besides, we give an interpretation of Rice paradox by comparing the cohesive fracture model and the surface-forming ERR based fracture criterion.  相似文献   

15.
In this paper, the steady crack growth of mode III under small scale yielding conditions is investigated for anisotropic hardening materials by the finite element method. The elastic-plastic stiffness matrix for anisotropic materials is given. The results show the significant influences of anisotropic hardening behaviour on the shape and size of plastic zone and deformation field near the crack tip. With a COD fracture criterion, the ratio of stress intensity factorsk ss/kc varies appreciably with the anisotropic hardening parameterM and the hardening exponentN.  相似文献   

16.
The effect of material compressibility on the stress and strain fields for a mode-I crack propagating steadily in a power-law hardening material is investigated under plane strain conditions. The plastic deformation of materials is characterized by the J2 flow theory within the framework of isotropic hardening and infinitesimal displacement gradient. The asymptotic solutions developed by the present authors [Zhu, X.K., Hwang K.C., 2002. Dynamic crack-tip field for tensile cracks propagating in power-law hardening materials. International Journal of Fracture 115, 323–342] for incompressible hardening materials are extended in this work to the compressible hardening materials. The results show that all stresses, strains, and particle velocities in the asymptotic fields are fully continuous and bounded without elastic unloading near the dynamic crack tip. The stress field contains two free parameters σeq0 and s330 that cannot be determined in the asymptotic analysis, and can be determined from the full-field solutions. For the given values of σeq0 and s330, all field quantities around the crack tip are determined through numerical integration, and then the effects of the hardening exponent n, the Poisson ratio ν, and the crack growth speed M on the asymptotic fields are studied. The approximate behaviors of the proposed solutions are discussed in the limit of ν  0.5 or n  ∞.  相似文献   

17.
The asymptotic fields near the tip of a crack steadily propagating in a ductile material under Mode III loading conditions are investigated by adopting an incremental version of the indeterminate theory of couple stress plasticity displaying linear and isotropic strain hardening. The adopted constitutive model is able to account for the microstructure of the material by incorporating two distinct material characteristic lengths. It can also capture the strong size effects arising at small scales, which results from the underlying microstructures. According to the asymptotic crack tip fields for a stationary crack provided by the indeterminate theory of couple stress elasticity, the effects of microstructure mainly consist in a switch in the sign of tractions and displacement and in a substantial increase in the singularity of tractions ahead of the crack-tip, with respect to the classical solution of LEFM and EPFM. The increase in the stress singularity also occurs for small values of the strain hardening coefficient and is essentially due to the skew-symmetric stress field, since the symmetric stress field turns out to be non-singular. Moreover, the obtained results show that the ratio η introduced by Koiter has a limited effect on the strength of the stress singularity. However, it displays a strong influence on the angular distribution of the asymptotic crack tip fields.  相似文献   

18.
The entire history of crack propagation in high-strength steel with dilatation-sensitivity is investigated in this work. Based on the experimentally determined stress-strain curves varying in the strain history according to the mean stress level, a central cracked panel made of unaged maraging steel subject to a remote tension is considered in the analysis. Due to tremendous amount of hydrostatic stress established in the vicinity of the crack tip, the effect of mean stress is accounted for in the onset for plastic flow. The J2I1 non-associate flow rule is incorporated in the incremental analysis employing the isoparametric finite element method with displacement formulation. When the stage of global instability is approached, the possible formation of a secondary crack in front of the primary crack is demonstrated by the use of strain energy density criterion. Also, the size effect on the crack resistance curve is established at the end for the unaged maraging steel.  相似文献   

19.
An analysis is presented which relates the critical value of tensile stress (σf) for unstable cleavage fracture to the fracture toughness (KIc) for a high-nitrogen mild steel under plane strain conditions. The correlation is based on (i) the model for cleavage cracking developed by E. Smith and (ii) accurate plastic-elastic solutions for the stress distributions ahead of a sharp crack derived by J. R. Rice and co-workers. Unstable fracture is found to be consistent with the attainment of a stress intensification close to the tip such that the maximum principal stress σyy exceeds σf over a characteristic distance, determined as twice the grain size. The model is seen to predict the experimentally determined variation of KIc with temperature over the range -150 to -75°C from a knowledge of the yield stress and hardening properties. It is further shown that the onset of fibrous fracture ahead of the tip can be deduced from the position of the maximum achievable stress intensification. The relationship between the model for fracture ahead of a sharp crack, and that ahead of a rounded notch, is discussed in detail.  相似文献   

20.
A finite element analysis was performed to simulate crack tip blunting and the development of the intense strain region in a small compact tension specimen (0.4 T CT) of SA533B-1 under plane strain large-scale yielding, with the condition of large-geometry change around the crack tip taken into consideration. The region where the equivalent plastic strain \?g3p is greater than 0.15 was defined as the intense strain region, which corresponded to the recrystallized-etched zone delineated experimentally around the blunting crack tip. The development of the intense strain region was discussed as a function of the J-integral and the crack opening displacement. A linear relationship was obtained between the plastic work Wp dissipated within the intense strain region and (Jy)2 or b2, where b is the crack opening displacement, defined as the separation of the two points at which the boundary of the intense strain region surrounding the crack tip intersects with the free surfaces of the crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号