首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
By replacing the conventional (non line-selective) unstable resonator, we succeeded in developing the very high power line-selective (line-tunable) CO2 laser as a pumping source for high power molecular gas (e.g.NH3) lasers in the infrared and far-infrared regions.The experiments were performed by using the very high power CO2 laser (4A unit of Lekko VIII) at The Institute of Laser Engineering, Osaka University.The output power of 9R(30)9.22µ m line from the developed CO2 laser, for instance, exceeded 0.5GW/pulse (50J/pulse with pulse width of 100nsec).  相似文献   

2.
A compacted size high power CO2 laser has been developed using an acousto-optically (AO) Q-switch. Performance characteristics have been investigated as a function of output mirror transmittance. The theory of six-temperature model for CO2 lasers has firstly been utilized to analyze the dynamical process in the AO Q-switched CO2 laser. This theory perfectly explains the behavior of energy transfer between different molecules in laser gain medium, and describes the shape of pulse laser. The calculated pulse waveforms are in good agreement with the experimental result. Both the experimental and theoretical results present that the optimal value of output mirror transmittance is 39%. Under this condition, the measured peak power is 4750 W and pulsed width is 160 ns, which is consistent with the calculations. Six-temperature model is a perfect theory for CO2 laser kinetics, which will lay a theoretical foundation for the laser optimum design.  相似文献   

3.
Selective laser isotope separation by TEA CO2 laser often needs short tail-free pulses. Using laser mixtures having very little nitrogen almost tail free laser pulses can be generated. The laser pulse characteristics and its gas lifetime is an important issue for long-term laser operation. Boltzmann transport equation is therefore solved numerically for TEA CO2 laser gas mixtures having very little nitrogen to predict electron energy distribution function (EEDF). The distribution function is used to calculate various excitation and dissociation rate of CO2 to predict laser pulse characteristics and laser gas lifetime, respectively.Laser rate equations have been solved with the calculated excitation rates for numerically evaluated discharge current and voltage profiles to calculate laser pulse shape. The calculated laser pulse shape and duration are in good agreement with the measured laser characteristics. The gas lifetime is estimated by integrating the equation governing the dissociation of CO2. An experimental study of gas lifetime was carried out using quadrapole mass analyzer for such mixtures to estimate the O2 being produced due to dissociation of CO2 in the pulse discharge. The theoretically calculated O2 concentration in the laser gas mixture matches with experimentally observed value. In the present TEA CO2 laser system, for stable discharge the O2 concentration should be below 0.2%.  相似文献   

4.
We report operation of a waveguide CO2 TE laser at excitation pulse repetition frequencies as high as 40 kHz. Quasi-continuous laser output was obtained yielding an average output power of 1.5 W from an active volume of 0.1 cc. Details of laser construction and excitation circuitry are given.  相似文献   

5.
A new formula is obtained for estimating the output power of fast-flow CO2 lasers. It is shown that a higher specific output power of these CO2 lasers in comparison with sealed-off CO2 lasers is caused mainly by the higher saturation intensity of the former. It is concluded that the temperature of the laser active medium affects almost only the charge stability and that, under stable discharge conditions, the same output power can be obtained at different temperatures of the active medium.  相似文献   

6.
The results of analytical and experimental investigations aimed at increasing laser-radiation resistance of materials for IR optics and developing high-power optics for microsecond TEA CO2 lasers with energy per pulse up to 12–25 kJ and gas-dynamic CO2 lasers with energy per pulse up to 130 kJ are presented. It is demonstrated that the integrated approach that combines the improvement of already existing technological methods and the development of novel technological methods for refining the parameters of materials for transmission IR optics (including techniques of growth of single crystals, strain hardening, and laser, ionic, and chemical treatment), the design and optimization of optical units (including the development of segmented transmission optics, the improvement of optical schemes for spatial formation of laser beams, the use of fast-response physical effects to screen optical elements from high-power fluxes of laser radiation) is necessary to solve this problem.  相似文献   

7.
Lasers for materials processing: specifications and trends   总被引:2,自引:0,他引:2  
An overview is given of the types of lasers dominating the field of laser materials processing. The most prominent lasers in this field are the CO2 and the Nd: YAG laser. The domain of CO2 lasers is applications which demand high laser powers (up to 30 kW are available at present), whereas the domain of Nd:YAG lasers is micro-machining applications. In the kilowatt range of laser output power, the two types of lasers are in competition. New diffusion-cooled CO2 laser systems are capable of output laser powers of several kilowatts, with good beam qualities, while still being quite compact. The output power and beam quality of Nd:YAG lasers has been improved in recent years, so that Nd:YAG lasers are now an alternative to CO2 lasers even in the kilowatt range. This is especially true for applications that demand optical fibre transmission of the laser beam, which is possible with Nd:YAG laser light but not with the longerwavelength light emitted by CO2 lasers. The main problem in solid-state lasers such as Nd:YAG is the thermal lensing effect and damage due to thermal stresses. In order to reduce thermal loading, cooling has to be enhanced. Several alternative geometries have been proposed to reduce thermal loading and, by this, thermal lensing effects. There are now slab and tube geometries which allow much higher output powers than the conventionally used laser rods. A very new scheme proposes a thin slab whose cooled side is also used as one of the laser mirrors, so that thermal gradients occur mainly in the direction of the beam propagation and not perpendicular to it, as is the case in the other geometries. As well as CO2 and Nd:YAG lasers, semiconductor laser diodes are very promising for direct use of the emitted light or as pump sources for Nd:YAG and other solid-state lasers. When packaging together thousands of single laser diodes, output powers of several kilowatts can be realized. Major problems are collimation of the highly divergent laser beams and cooling of the laser diode bars.  相似文献   

8.
In this paper, the output performances at 1331 nm in continuous-wave (CW) operation and the passive Q-switching regime of a Nd:Gd3Ga5O12(Nd:GGG) laser crystal have been investigated under pumping with diode lasers. A maximum CW output power of 1.5 W was reached at an incident pump power of 7.5 W; the overall optical-to-optical efficiency and the slope efficiency with respect to the pump power were 21.5% and 19.4%, respectively. The passive Q-switching regime was achieved with Co2+:LaMgAl11O19 (Co2+:LMA) saturable absorber (SA) crystals. A maximum average output power of 183 mW was recorded with a Co2+:LMA SA with initial transmission T i of 90%. The pulse energy was 18.7 μJ and the pulse duration was 26.1 ns, which correspond to a pulse peak power of 0.7 kW. With a Co2+:LMA SA with T i=81%, the average power decreased to 131 mW. However, the pulse energy increased to 21.4 μJ, the pulse duration was 16.4 ns and the pulse peak power increased to 1.3 kW.  相似文献   

9.
Noncollinear four photon mixing of two TEA CO2 laser beams in germanium at room temperature has been used to obtain phase-matched generation of step tunable radiation in the 8.7 μm region which is of interest for the uranium isotope separation. Using an 8.3 cm long crystal of germanium, peak output power of ≈10kW (corresponding to 1 mJ per pulse) was obtained at 8.7 μm with 3 MW peak input power from each of the two CO2 lasers operating at 9.6 μm and 10.6 μm.  相似文献   

10.
The performances of a TEA CO2 oscillator-amplifier system consisting of a helical laser and a one-meter Lamberton-Pearson-type double-discharge laser are reported. Time and spatial profiles for the input and output of the amplifier have been studied. A small-signal gain coefficient of 0.031 cm-1 and a saturation energy of 0.35 J/cm2 are measured for a pulse of 100 nsec duration with a low-power tail of 1 μsec.  相似文献   

11.
The wavelength-temperature shift observed in pulsed TE CO2 lasers is discussed theoretically by means of Six-temperature model rate equations for tunable TE CO2 lasers. Numerical calculations of the temperature-wavelength shift in a pulsed TE CO2 laser with a simple plano-concave stable resonator, whether excited by conventional low-inductance fast-discharge scheme or by a long-pulse Pulser/sustainer discharge scheme, show that the laser output wavelengths are within the 10P branch as the ambient temperature varies from 228 to 338 K, but will change as the ambient temperature varies. The laser output wavelengths will move to the transition lines with longer wavelengths in the 10P branch as the ambient temperature increases and vice versa. The calculated results also illustrate that near the ambient temperature of 310 K, the laser is more likely to operate on multi-transition lines. Considering this wavelength-temperature shift, the chilling device adopted in high-power high repetition rate TE CO2 lasers is important in maintaining a stable laser output spectra as well as a stable laser output power. The numerical results also suggest that a frequency agile resonator is highly recommended if stable laser output spectra are required in TE CO2 lasers.  相似文献   

12.
It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.  相似文献   

13.
A passively Q-switched microsecond Er-doped fiber laser at 1532 nm wavelength was demonstrated by using a ReS2-based saturable absorber. The absorber was fabricated with ReS2 by exfoliating mechanically and transferred onto a fiber end. Stable Q-switched laser pulses were observed with the shortest pulse duration of 2.1 μs, the maximum average output power of 2.48 mW, and the pulse with energy up to 38 nJ. Our experimental results suggest that ReS2 is potential for a Q-switcher near 1.55 μm wavelength.  相似文献   

14.
A mathematical model, based on the Landau–Teller equations of six-temperature model for the CO2–N2–He–CO system, to describe the process of dynamic emission in tunable TEA CO2 lasers is introduced. In this model, the Landau–Teller equations are rewritten with regard to fine longitudinal mode frequencies in the laser resonator. These revised equations can be utilized to estimate the laser output spectra as well as other laser output pulse parameters. Examples are given to show the modeling results of non-tunable, grating tuned or injection-locking TEA CO2 lasers.  相似文献   

15.
A transversely excited CO2 laser has been used to investigate the interaction between laser pulses of duration ≈ 40 μs, and metallic targets. The dependence of machining efficiency on power density has been studied, and high speed photography has been used to compare interactions with different pulse durations. Metallurgical analysis has revealed important structural effects in both mild steel and aluminum samples.  相似文献   

16.
A study is presented of the total differential Raman cross section for CO2, O2, CO, CH4, H2O and H2 relative to that of N2. The scattered radiation was collected perpendicularly to the excitation beam from a 337.1 nm nitrogen laser of 50 kW peak power. The short pulse with a duration of 2.5 ns was conveniently handled by a sampling oscilloscope. The sampling technique permits a smoothing process to be performed at the output of the sampling oscilloscope, which does not affect the time resolution, in order to improve the signal-to-noise ratio of the records of Raman spectra.  相似文献   

17.
The results of experimental measurements of the hydrodynamic efficiency of laser plasma for aluminum and copper targets are presented. The studies were performed on the “Kanal-2” laser setup system using the ballistic pendulum method. The pressure in the interaction chamber was 10?4 Torr, the pendulum length was 145 mm, the mass of the pendulum with a target was 7.2 g. At the half-height pulse duration of 2.5 ns, the power density on the target surface was ~1013 W/cm2. In the case of aluminum target, the hydrodynamic efficiency coefficient increased from 1.5% to 4.5% with increasing laser pulse energy from 5 J to 10 J, whereas it remained at the level of 5% for the copper target.  相似文献   

18.
高功率TEA CO2激光器两波长激光切换输出技术   总被引:1,自引:0,他引:1       下载免费PDF全文
 以TEA CO2激光器通常采用的平-凹光学稳定腔为基础,提出了一种新的波长选支方法——输出窗口镀膜选支方法。利用一台高平均功率TEA CO2激光器进行了选支实验研究,结合现有光学镀膜技术,得到了中心波长为9.3 μm的激光单谱线输出,其单脉冲能量及平均功率与激光器原中心波长10.6 μm单谱线输出的相应参数基本相当。研究发现,以相同单脉冲能量激光照射热敏纸时,中心波长9.3 μm激光光斑与中心波长10.6 μm的明显不同。同时,还设计出两波长窗口密闭免调切换装置,在一台激光器上实现了10.6,9.3 μm两个中心波长激光同等功率水平的免调切换输出,切换位置误差小于5″,密封性能满足使用要求。  相似文献   

19.
We report on the generation of mode-locking pulse trains with high average output powers from diode-pumped Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers emitting at around 2 μm. The highest output power of 365 mW was obtained with the Tm-Ho:YLF4 laser, whereas the shortest pulse duration of 120 ps and the widest tunability range of 59 nm was achieved with the Tm-Ho:BaY2F8 laser. PACS 42.55.Xi; 42.60.Fc; 42.72.Ai; 42.55.Rz; 42.70.Hj  相似文献   

20.
We use a single walled carbon nanotubes (SWCNTs) absorber to demonstrate a high power mode locking for Nd:YVO4 lasers. Under the pump power of 12 W, continuous wave mode-locked (CWML) pulse were generated with the maximum average output power of 3.6 W and the pulse duration of 7.6 ps. The peak power and the single pulse energy of the mode-locked laser were up to 4.9 kW and 37.5 nJ, respectively. To our knowledge, this is the highest average output power of the CWML laser with the SWCNTs absorber reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号