首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of the K3H(SO4)2 compound are investigated using X-ray diffraction on Xcalibur S and Bruker diffractometers. The structure of the low-temperature monoclinic phase is refined (space group C2/c, z = 4, a = 14.698(1) Å, b = 5.683(1) Å, c = 9.783(1) Å, β = 103.01(1)°, T = 293 K, Bruker diffractometer), the structural phase transition is revealed, and the structure of the high-temperature trigonal phase is determined (space group R \(\bar 3\) m, z = 3, a = 5.73(1) Å,c = 21.51(1) Å,T = 458 K, Xcalibur diffractometer).  相似文献   

2.
It is demonstrated that 50% substitution of vanadium for molybdenum in the pyrochlore lattice of the complex oxide Y2(V x Mo1 ? x )2O7 results in a transition from the spin-glass ground state (at x = 0) to the ferromagnetic state in Y2VMoO7 (a = 10.1645(2) Å, T C = 55 K). The Gd2V0.67Mo1.33O7 compound (a = 10.2862(3) Å) is a ferromagnet with T C (84 K) exceeding that of undoped Gd2MnO2O7.  相似文献   

3.
The conditions of synthesizing a new Ag6SnS4Br2 compound were studied. The crystallographic parameters of the unit cell were determined as follows: space group Pnma, a=6.67050(10) Å, b=7.82095(9) Å, c=23.1404(3) Å, and Z=4. The total electrical conductivity and its ionic component were measured by a dc probe method in the temperature range 210–380 K. Kinks in the conductivity curve and the differential thermogram of heating the alloy were revealed at 235 K. It was concluded that the mass and charge transfers in the compacted Ag6SnS4Br2 alloy powder have an intragrain character.  相似文献   

4.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

5.
Electrical transport and structural characterizations of isoelectronically substituted Ba(Fe0.9Ru0.1)2As2 have been performed as a function of pressure up to ~ 30 GPa and temperature down to ~ 10 K using designer diamond anvil cell. Similar to undoped members of the AFe2As2 (A = Ca, Sr, Ba) family, Ba(Fe0.9Ru0.1)2As2 shows anomalous a-lattice parameter expansion with increasing pressure and a concurrent ThCr2Si2 type isostructural (I4/mmm) phase transition from tetragonal (T) phase to a collapsed tetragonal (cT) phase occurring between 12 and 17 GPa where the a is maximum. Above 17 GPa, the material remains in the cT phase up to 30 GPa at 200 K. The resistance measurements show evidence of pressure-induced zero resistance that may be indicative of high-temperature superconductivity for pressures above 3.9 GPa. The onset of the resistive transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above ~ 10.6 GPa near the T-cT transition. We have determined the crystal structure of the high-T c phase of Ru-doped BaFe2As2 to remain as tetragonal (I4/mmm) by analyzing the X-ray diffraction pattern obtained at 10 K and 9.7 ± 0.7 GPa, as opposed to inferring the structural transition from electrical resistance measurement, as in a previous report [S.K. Kim, M.S. Torikachvili, E. Colombier, A. Thaler, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 84, 134525 (2011)].  相似文献   

6.
Polarization-optical study of twinning and measurements of the Raman spectra and birefringence in oxyfluoride (NH4)3Ti(O2)F5 were carried out over the temperature range 90–350 K. Phase transitions were detected at temperatures T 01 = 266 K (second-order transition) and T 02 = 225 K (first order). It is assumed that the crystal symmetry is changed as follows: Fm3m ? I4/mmm ? I4/m. Anomalies of the spectral parameters are established in the frequency range of internal vibrations of ammonium ions and Ti(O2)F5 complexes. An analysis of the results shows that the transition at T 01 is likely due to small shifts of the tetrahedral groups from their position on the triad axis and that the transition at T 02 is due to fluorine-oxygen ordering of Ti(O2)F5 complexes.  相似文献   

7.
The temperature-dependent field cooling (FC) and zero-field cooling (ZFC) magnetizations, i.e., M FC and M ZFC, measured under different magnetic fields from 500 Oe to 20 kOe have been investigated on two exchange–spring CoFe2O4/CoFe2 composites with different relative content of CoFe2. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at a field-dependent irreversible temperature T irr. For the sample with less CoFe2, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad peak at an intermediate temperature T 2 below T irr , and the moments are suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the ?d(M FC ? M ZFC)/dT curves of the sample with more CoFe2, besides a broad peat at an intermediate temperature T 2, a rapid rise around the low temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
Graphical abstract CoFe2O4/CoFe2 composites with different relative content of CoFe2 were prepared by reducing CoFe2O4 in H2 for 4 h (S4H) and 8 h (S8H). The temperature-dependent FC and ZFC magnetizations, i.e., M FC and M ZFC, under different magnetic fields from 500 Oe to 20 kOe have been investigated. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at field-dependent irreversible temperature T irr. For the S4H sample, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad and field-dependent relaxing peak at T 2 below T irr (figure a), and the moments were suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the S8H sample, it exhibits the reentrant spin-glass state around 50 K, as evidenced by a peak in the M FC curve (inset in figure b) and as a result of the cooperative effects of the random anisotropy of CoFe2O4, exchange–spring occurring at the interface of CoFe2O4 and CoFe2 together with the inter-particle dipolar interaction (figure c); in ?d(M FC ? M ZFC)/dT curves, besides a broad relaxing peat at T 2, a rapid rise around the low-temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
  相似文献   

8.
Tm x Cu3V4O12, a perovskite-like oxide (space group, Im-3; Z = 2; a = 7.279–7.293 Å) containing vacancies in its cationic sublattice, was obtained barothermally (P = 7.0–9.0 GPa, t = 1000–1100°C) for the first time. The temperature dependences on the electrical resistivity (10–300 K) and the magnetic susceptibility (0–300 K) were investigated. It was shown that the oxide Tm x Cu3V4O12 is characterized by metal-type conductivity and paramagnetic properties.  相似文献   

9.
In order to directly observe neutron scattering by heavy fermion quasiparticles at low temperatures, a CeRu2Si2 single crystal has been studied by the small-angle neutron scattering method. In the experiment, neutron scattering is observed at T = 0.85 K for momentum transfers q ≤ 0.04 Å?1, which is treated as the orbital component of magnetic scattering by heavy fermion quasiparticles. It has been found that the application of a magnetic field H = 1 T leads to both an increase in the observed scattering and its anisotropy with respect to the field direction. Moreover, measurements in the magnetic field reveal additional scattering for q > 0.04 Å?1, which is well described by a Lorentzian and is interpreted as neutron magnetic scattering by spin-density fluctuations with a correlation radius Rc ≈ 30 Å.  相似文献   

10.
Crystals of the KPb2Br5compound are investigated using polarized light microscopy and calorimetry. The birefringence and the angle of rotation of the optical indicatrix are measured in the temperature range 270–620 K. It is found that the KPb2Br5 crystal undergoes a first-order ferroelastic phase transition at temperatures T0↑ = 519.5 K and T0↓ = 518.5 K with a change in the enthalpy ΔH = 1300 ± 200 J/mol. This transition is accompanied by both twinning and the symmetry change mmm ? P21/c. It is revealed that the angle of rotation of the optical indicatrix exhibits an unusual behavior under variations in the temperature due to a strong temperature dependence of the birefringence.  相似文献   

11.
Polycrystalline samples of SrFe2/3W1/3O3 (SFWO) ceramic were obtained by solid-phase reactions with subsequent sintering using conventional ceramic technology. X-ray diffraction analysis showed that at room temperature, the SFWO ceramic is single-phase and has a perovskite-type structure with tetragonal symmetry and parameters a = 3.941(9) Å, c = 3.955(6) Å, and c/a = 1.0035. In studying the magnetic properties and the Mössbauer effect in SFWO ceramics, it is found that the material is a ferrimagnet, and the iron ions are only in the valence state of Fe3+. It is suggested that in the temperature range of T = 150–210°C, a smeared phase transition from a cubic (paraelectric) phase to a tetragonal (ferroelectric) phase takes place in SFWO with decreasing temperature.  相似文献   

12.
Epitaxial BaFe1.8Cr0.2As2 thin films with the tetragonal c-axis perpendicular to the thin film surface were grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) single crystalline substrates using pulsed laser deposition (PLD). Resistive measurements indicate the existence of two transitions at temperatures of about 80 K and 40 K. The transition at 80 K is attributed to the structural transition from the high temperature tetragonal phase to the low temperature orthorhombic phase accompanied with the magnetic transition from a paramagnetic to an antiferromagnetic state as known for doped bulk systems. Below T ≈ 40 K the magnetization curves measured perpendicularly to the orthorhombic c-axis in fields up to 9 Tesla show two inflexion points indicating metamagnetic transitions.  相似文献   

13.
A new perovskite-like compound Er0.73Cu3V4O12 (space group Im \(\bar 3\), Z = 2, a = 7.266 Å) has been synthesized barothermally (P = 8.0 GPa, t = 1000°C). Its electrical and magnetic properties have been studied. It is found that the temperature dependence of the electrical conductivity (in the range 78–300 K) has of semiconductor type. The behavior of the impedance and admittance has been analyzed at 290 K and frequencies of 200 Hz to 200 kHz under atmospheric pressure and at high (15–42 GPa) pressures.  相似文献   

14.
We report on the synthesis conductions and results of experimental investigations of the crystal structure and magnetic properties of a new magnetic compound YbFeTi2O7. According to the X-ray diffractometry data, the crystal structure of the investigated compound is described by the rhombic space group Pcnb with unit cell parameters of a = 9.8115(1) Å, b = 13.5106(2) Å, and c = 7.31302(9) Å and atomic disordering in the distribution of iron ions Fe3+ over five structural sites. The magnetic measurements in the lowtemperature region revealed a kink in the temperature dependence of the magnetic moment and its dependence on the sample magnetic prehistory. The experimental results obtained suggest that with a decrease in temperature the sample passes from the paramagnetic state to the spin-glass-like magnetic state characterized by a freezing temperature of T f = 4.5 K at the preferred antiferromagnetic exchange coupling in the sample spin system. The chemical pressure variation upon replacement of rare-earth ion R by Yb in the RFeTi2O7 system does not change the crystal lattice symmetry and magnetic state.  相似文献   

15.
Temperature dependences of specific heat Cp(T) and coefficient of thermal expansion ;(T) for Na0.95Li0.05NbO3 sodium-lithium niobate ceramic samples are investigated in the temperature range of 100–800 K. The Cp(T) and α(T) anomalies at T3 = 310 ± 3 K, T2 = 630 ± 8 K, and T1 = 710 ± 10 K are observed, which correspond to the sequence of phase transitions N ? Q ? S(R) ? T2(S). The effect of heat treatment of the samples on the sequence of structural distortions was established. It is demonstrated that annealing of the samples at 603 K leads to splitting of the anomaly corresponding to the phase transition QR/S in two anomalies. After sample heating to 800 K, the only anomaly is observed in both the Cp(T) and ;(T) dependence. Possible mechanisms of the observed phenomena are discussed.  相似文献   

16.
The results of x-ray structural studies of the [N(C2H5)4]2CdBr4 crystal at low temperatures are presented. The unit cell parameters and the thermal expansion coefficients along the main crystallographic directions are measured at temperatures in the range from 90 to 320 K. The integrated intensities of the diffraction reflections are investigated as a function of the temperature. It is shown that the curves a = f(T), c = f(T), I 500 = f(T), and I 006 = f(T) at temperatures T 1 ≈ 174 K and T 2 ≈ 226 K exhibit anomalies in the form of abrupt changes in the lattice parameters and the diffraction reflection intensities. This indicates that the [N(C2H5)4]2CdBr4 crystal undergo phase transitions at these temperatures. Moreover, there is an anomaly in the form of a small maximum at the temperature T 3 = 293 K.  相似文献   

17.
The present paper reports the synthesis, crystal structure, 13C and 111Cd cross-polarization magic-angle spinning nuclear magnetic resonance(CP-MAS-NMR) analysis and ac conductivity for a new organic–inorganic hybrid salt, [C7H12N2][CdCl4]. The compound crystallizes in the triclinic system, space group P\( \overline 1 \), with unit cell dimensions: a?=?7.1050(3) Å, b?=?8.9579(3) Å, c?=?9.4482(3) Å, α?=?81.415(1)°, β?=?89.710(2)°, γ?=?85.765(1)°, V?=?592.97(4) Å3, and Z?=?2. The asymmetric unit is composed of one-2,4-diammonium toluene cation and one [CdCl4]2? anion. The Cd atom is in a slightly distorted octahedra coordination environment. Its structure can be described by infinite chains of CdCl6 octahedron linked to organic cations by a strong charge-assisted N–H???Cl interactions in order to build organic–inorganic layers staked along \( \left[ {0\overline 1 1} \right] \) direction. The solid state 13C CP-MAS-NMR spectra has shown seven isotropic resonances, confirming the existence of seven non-equivalent carbon atoms, which is consistent with crystal structure determined by X-ray diffraction. As for 111Cd MAS-NMR, it has shown one cadmium site with isotropic chemical shift observed at 167.2 ppm. The complex impedance of the compound has been investigated in the temperature range of 403–460 K and in the frequency range of 200 Hz–5 MHz. The impedance plots have shown semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements.  相似文献   

18.
The EPR spectra of Cu2+ ions (2 D 5/2) located at two structurally nonequivalent positions Cu1 and Cu2 in crystals of lithium heptagermanate Li2Ge7O15 are recorded. The angular dependences of the EPR spectrum are measured in the paraelectric phase of the Li2Ge7O15 compound (T = 300 K). The components of the g factor and the hyperfine interaction tensor A are determined, and the orientation of the magnetic axes with respect to the crystallographic basis is established. The EPR spectra are recorded in the temperature range in the vicinity of the temperature T C = 283 K of the transition from the paraelectric phase to the ferroelectric phase. The position symmetry of the Cu1 and Cu2 centers is determined at temperatures above and below the phase transition temperature T C . The localization of paramagnetic centers in the structure is discussed, An analysis of the results obtained demonstrates that the Cu1 and Cu2 centers in the Li2Ge7O15 crystal lattice replace lithium ions located at two structurally nonequivalent positions with the symmetries described at temperatures above T C by the triclinic C i and monoclinic C 2 point groups, respectively.  相似文献   

19.
Magnetic, elastic, magnetoelastic, transport, and magnetotransport properties of the Eu0.55Sr0.45MnO3 ceramics have been studied. A break was detected in the temperature dependence of electrical resistivity ρ(T) near the temperature of the magnetic phase transformation (41 K), with the material remaining an insulator down to the lowest measurement temperature reached (ρ=106 Ω cm at 4.2 K). In the interval 4.2≤T≤50 K, the isotherms of the magnetization, volume magnetostriction, and ρ were observed to undergo jumps at the critical field HC1, which decreases with increasing T. For 50≤T≤120 K, the jumps in the above curves persist, but the pattern of the curves changes and HC1 grows with increasing T. The magnetoresistance Δρ/ρ = (ρ H H=0)/ρ H is positive for H<HC1 and passes through a maximum at 41 K, where Δρ/ρ = 6%. For H>HC1, the magnetoresistance is negative, passes through a minimum near 41 K, and reaches a colossal value of 3×105 % at H=45 kOe. The volume magnetostriction is negative and attains a giant value of 4.5×10?4atH=45 kOe. The observed properties are assigned to the existence of three phases in Eu0.55Sr0.45MnO3, namely, a ferromagnetic (FM) phase, in which carriers are concentrated because of the gain in s-d exchange energy, and two antiferromagnetic (AFM) phases of the A and CE types. Their fractional volumes at low temperatures were estimated to be as follows: ~3% of the sample volume is occupied by the FM phase; ~67%, by the CE-type AFM phase; and ~30%, by the A-type AFM phase.  相似文献   

20.
The heat capacity of the La0.9Ag0.1MnO3 manganite is measured in the temperature range 77–350 K and studied in detail in the vicinity of the Curie temperature for the first time. The regularities of the variation in the universal critical parameters in the vicinity of the phase transition point are established. The critical exponent and the amplitude of the heat capacity are calculated to be α = ?0.127 and A +/A ? = 1.146 with due regard for the scaling corrections. These parameters correspond to the critical behavior within the three-dimensional Heisenberg model. The size of ferromagnetic droplets in the paramagnetic range at T > T C is estimated as ξ ≈ 19 Å. The results obtained are analyzed thoroughly and compared with theoretical data for a number of model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号