首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of x-ray structural studies of the [N(C2H5)4]2CdBr4 crystal at low temperatures are presented. The unit cell parameters and the thermal expansion coefficients along the main crystallographic directions are measured at temperatures in the range from 90 to 320 K. The integrated intensities of the diffraction reflections are investigated as a function of the temperature. It is shown that the curves a = f(T), c = f(T), I 500 = f(T), and I 006 = f(T) at temperatures T 1 ≈ 174 K and T 2 ≈ 226 K exhibit anomalies in the form of abrupt changes in the lattice parameters and the diffraction reflection intensities. This indicates that the [N(C2H5)4]2CdBr4 crystal undergo phase transitions at these temperatures. Moreover, there is an anomaly in the form of a small maximum at the temperature T 3 = 293 K.  相似文献   

2.
The temperature dependences of the intense magnetocaloric effect ΔT AD(T, H) and the heat capacity C p (T) of the (La0.4Eu0.6)0.7Pb0.3MnO3 manganite are directly measured using adiabatic calorimetry. The experimental dependences ΔT AD(T) are in satisfactory agreement with those calculated from the data on the behavior of the magnetization. The factors responsible for the absence of an anomaly in the experimental temperature dependence of the heat capacity C p (T) in the range of the magnetic phase transition are discussed.  相似文献   

3.
The temperature dependences of the specific heat C(T) and thermal conductivity K(T) of MgB2 were measured at low temperatures and in the neighborhood of T c . In addition to the well-known superconducting transition at T c ≈40 K, this compound was found to exhibit anomalous behavior of both the specific heat and thermal conductivity at lower temperatures, T≈10–12 K. Note that the anomalous behavior of C(T) and K(T) is observed in the same temperature region where MgB2 was found to undergo negative thermal expansion. All the observed low-temperature anomalies are assigned to the existence in MgB2 of a second group of carriers and its transition to the superconducting state at Tc2≈10?12 K.  相似文献   

4.
The neodymium ferroborate NdFe3(BO3)4 undergoes an antiferromagnetic transition at T N = 30 K, which manifests itself as a λ-type anomaly in the temperature dependence of the specific heat C and as inflection points in the temperature dependences of the magnetic susceptibility χ measured at various directions of an applied magnetic field with respect to the crystallographic axes of the sample. Magnetic ordering occurs only in the subsystem of Fe3+ ions, whereas the subsystem of Nd3+ ions remains polarized by the magnetic field of the iron subsystem. A change in the population of the levels of the ground Kramers doublet of neodymium ions manifests itself as Schottky-type anomalies in the C(T) and χ(T) dependences at low temperatures. At low temperatures, the magnetic properties of single-crystal NdFe3(BO3)4 are substantially anisotropic, which is determined by the anisotropic contribution of the rare-earth subsystem to the magnetization. The experimental data obtained are used to propose a model for the magnetic structure of NdFe3(BO3)4.  相似文献   

5.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

6.
We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field and at H≈4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the vicinity of Tc and at lower temperatures. It was established that MgB2, like oxide-based high-temperature superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T) in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known superconducting transition at Tc≈40 K, MgB2 exhibits an anomalous behavior of both heat capacity and thermal conductivity in the region of T≈10–12 K. The anomalies of C(T) and κ(T) take place in the same temperature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the density of the Bose condensate corresponding to these carriers at Tc2≈10–12 K.  相似文献   

7.
The thermopower, S, magnetothermopower, ΔS/S, resistivity, ρ, and magnetoresistivity, Δρ/ρ, depending on the temperature T and magnetic field H, have been studied in an Nd0.5Sr0.5MnO3 single crystal consisting of three types of clusters: an antiferromagnetic CE-type with charge-orbital ordering (below the Neel temperature TNCE ~ 145 K) and an A-type with TNA ~ 220 K; a ferromagnetic at 234 ≤ T ≤ 252 K, and a ferromagnetic metal phase below the Curie temperature TC = 248 K. The thermopower was found to be negative, indicating the dominance of the electronic type of conductivity. In the S(T) curves, a sharp minimum is observed in the temperature range of 100 K ≤ T ≤ 133 K, close to TNCE, where the absolute S value attains 53 μV/K. With a further increase in temperature, the absolute S value decreases rapidly; at 200 K it is equal to 7 μV/K. It then slightly increases, reaching its maximum value of 15 μV/K at a temperature of 254 K, which is close to TC. The absolute thermopower decreased under the influence of the magnetic field; i.e., a negative magnetothermopower occurs. In {ΔS/S}(T) curves, a sharp minimum is observed at T = 130 K close to TNCE, where the magnetothermopower reaches a huge value of ~45% at H = 13.23 kOe. A broad minimum in the {ΔS/S}(T) curves is observed near the Curie temperature and its value is also high, viz., ~15% in the maximum measuring magnetic field of 13.23 kOe. The extremely high magnetothermopower values mean that the charge-orbital ordered nanoclusters or ferron type make the main contribution to the thermopower of the entire sample. The behavior of the ρ(T) and {Δρ/ρ}(T) curves is similar to that of the S(T) and {ΔS/S}(T) dependencies, which is in agreement with this conclusion.  相似文献   

8.
(NH4)3ZrF7 single crystals were grown, and polarization-optical and x-ray diffraction studies were performed on powders and crystalline plates of various cuts over a wide temperature range. Phase transitions are revealed at temperatures T 1↑ = 280 K, T 2↑ = 279.6 K, T 3↑ = 260–265 K, and T 4↑ = 238 K on heating and at T 1↓ = 280 K, T 2↓ = 269–270 K, T 3↓ = 246 K, and T 4↓ = 235 K on cooling. The sequence of changes in symmetry is established to be as follows: O h 5 (Z = 4) ? D 2h 25 (Z = 2) ? C 2h 3 (Z = 2) ? C i 1 (Z = 108) ? monoclinic2(Z = 216).  相似文献   

9.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

10.
This paper reports on the results of complex investigations into the structural, thermodynamic, and dilatometric properties of the C60 dimerized phase prepared under compression of a C60 fullerite at a pressure up to 8 GPa and a temperature of 290 K. It is demonstrated that the dimerized phase has a face-centered cubic structure with a lattice parameter a=14.02±0.05 Å. The dimeric structure of the studied sample is confirmed by x-ray diffraction analysis. According to the dilatometric data, the volume jump observed in the vicinity of the orientational transition for the dimerized phase is estimated to be approximately 30 times less than that for the C60 fullerite. The temperature dependence of the heat capacity of the (C60)2 crystalline dimer is examined using precision adiabatic vacuum calorimetry under normal pressure in the temperature range from T → 0 K to 340 K. The results obtained are used in the calculations of thermodynamic functions, namely, the heat capacity C p 0 (T), the enthalpy H0(T)-H0(0), the entropy S0(T), and the Gibbs function G0(T)-H0(0). The fractal dimension D is determined as a function of the heat capacity. The standard entropy of the formation of the (C60)2 crystalline dimer from a simple compound (graphite) at T=298.15 K and normal pressure is calculated.  相似文献   

11.
The temperature dependence of the permittivity of a Hg2Cl2 crystal has been investigated within the Landau phenomenological theory. At T < T C, the linear permittivity has a singularity in the form ~(T C?T)1/2; however, this anomaly may disappear in a multidomain sample. The nonlinear permittivity also has an anomaly near T C but of stronger type: ~(T C ? T)?1/2.  相似文献   

12.
The temperature dependences of the permittivity ? and the false-color image patterns obtained by the rotating polarizer method for single crystals of (1 ? x)NaNbO3?x Gd1/3NbO3 (x = 0.003, 0.090) solid solutions with different degrees of diffuseness of the phase transition are investigated. A multifractal analysis of the false-color images has revealed anomalies in the temperature dependences of the parameter ? of the multifractal spectrum. For a sample with a sharp phase transition (x ≈ 0.003), the temperature of this anomaly is in good agreement with the temperature of the jumps in the permittivity ?(T) and birefringence. For an NNG crystal with x ≈ 0.09, which exhibits a diffuse maximum of ?(T), the temperatures of the anomalies of ?(T) differ in the central and peripheral regions, which correlates with the distribution of Gd over the crystal.  相似文献   

13.
It is demonstrated that 50% substitution of vanadium for molybdenum in the pyrochlore lattice of the complex oxide Y2(V x Mo1 ? x )2O7 results in a transition from the spin-glass ground state (at x = 0) to the ferromagnetic state in Y2VMoO7 (a = 10.1645(2) Å, T C = 55 K). The Gd2V0.67Mo1.33O7 compound (a = 10.2862(3) Å) is a ferromagnet with T C (84 K) exceeding that of undoped Gd2MnO2O7.  相似文献   

14.
The low-temperature specific heat C p of La(Fe0.873Co0.007Al0.12)13 compound has been measured in two states: (i) antiferromagnetic (AFM) with a Néel temperature of T N = 192 K and (ii) ferromagnetic (FM). The FM order appears at T = 4.2 K in a sample exposed to an external magnetic field with induction B C ≥ 2.5 T and is retained for a long time in a zero field at temperatures up to T*C = 23 K. The coefficient γFM in the low-temperature specific heat C = γT + βT 3 in the FM state differs quite insignificantly from that (γAFM) in the AFM state. Contributions to the low-temperature specific heat, which are related to a change in the elastic and magnetoelastic energy caused by magnetostrictive deformations, are considered.  相似文献   

15.
Static magnetic susceptibility χ(T) in the normal state (Tc ≤ T ≤ 400 K) and specific heat C(T) near temperature Tc of the transition to the superconducting state are experimentally studied for a series of fine crystalline samples of high-temperature YBa2Cu3Oy superconductor, having y and Tc close to optimal but differing in the degree of nanoscale structural disordering. It is shown that under the influence of structural disordering, there is enhancement of anomalous pseudogap behavior of the studied characteristics and a significant increase in the width of the pseudogap.  相似文献   

16.
An orientational phase transition in C60 crystals was studied by differential scanning calorimetry with the highest resolution provided by this method. The temperature dependence of the specific heat ΔC p (T) was found to have a double peak in the range 250–270 K. An analysis of the temperature dependences of heat capacity in the region of the peaks revealed that the lower temperature peak follows a power law of the type ΔC p = A/(T?T0)1/2 characteristic of order-disorder second-order phase transitions, while the high-temperature peak can be identified with a diffuse Λ-shaped first-order phase transition.  相似文献   

17.
Magnetic flux structure on the surface of EuFe2(As1-x P x )2 single crystals with nearly optimal phosphorus doping levels x = 0.20 and x = 0.21 is studied by low-temperature magnetic force microscopy and decoration with ferromagnetic nanoparticles. The studies are performed in a broad temperature range. It is shown that the single crystal with x = 0.21 in the temperature range between the critical temperatures T SC= 22 K and T C = (18 ± 0.3) K of the superconducting and ferromagnetic phase transitions, respectively, has the vortex structure of a frozen magnetic flux, typical for type-II superconductors. The magnetic domain structure is observed in the superconducting state below T C. The nature of this structure is discussed.  相似文献   

18.
Heat capacity of the PbMg1/3Nb2/3O3 compound is measured using the methods of adiabatic and differential scanning calorimetry in the temperature range 80–750 K. Two blurred anomalies on the C p (T) dependence are observed in wide temperature intervals of 200–400 K and 500–700 K. The results of studies are discussed together with data on the structure and phonon spectrum in the framework of spherical random bond-random field model.  相似文献   

19.
The temperature dependence of the Nernst-Ettingshausen coefficient Q(T) in the normal phase of doped HTSCs of the yttrium system was studied. The main features characterizing the behavior of this coefficient were revealed, and the character and mechanism of the effect that various nonisovalent substituents exert on the Q(T) dependence were analyzed. It is shown that the narrow-band model permits one not only to describe all the specific features observed in the Q(T) curves but also to perform a simultaneous quantitative analysis of the temperature dependences of four kinetic coefficients (the electrical resistivity and the Seebeck, Hall, and Nernst-Ettingshausen coefficients) with the use of a common set of model parameters characterizing the band structure and carrier system in the normal phase of an HTSC. This approach was employed to determine the carrier mobilities and the asymmetry of the dispersion curve in the systems studied (YBa2Cu3Oy, y = 6.37–6.91; YBa2Cu3?xCoxOy, x = 0–0.3; Y1?xCaxBa2Cu3Oy, x = 0–0.25; Y1?xCaxBa2?xLaxCu3Oy, x = 0–0.5) and to analyze the effect of the substitutions involved on the variation of these parameters.  相似文献   

20.
We use the spin-rotation-invariant Green’s function method as well as thehigh-temperature expansion to discuss the thermodynamic properties of the frustratedspin-S J 1-J 2 Heisenbergmagnet on the body-centered cubic lattice. We consider ferromagnetic nearest-neighborbonds J 1<0 and antiferromagnetic next-nearest-neighbor bonds J 2 ≥ 0 andarbitrary spin S. We find that the transition point\hbox{$J_2^c$}J2cbetween the ferromagnetic ground state and theantiferromagnetic one is nearly independent of the spin S, i.e., it is very closeto the classical transition point\hbox{$J_2^{c,{\rm clas}}= \frac{2}{3}|J_1|$}J2c,clas=23|J1|. At finite temperatures we focus on the parameterregime\hbox{$J_2<J_2^c$}J2<J2cwith a ferromagnetic ground-state. We calculate theCurie temperature T C (S, J 2)and derive an empirical formula describing the influence of the frustration parameterJ 2 and spin S on T C . We find that theCurie temperature monotonically decreases with increasing frustration J 2, where veryclose to\hbox{$J_2^{c,{\rm clas}}$}J2c,clasthe T C (J 2)-curveexhibits a fast decay which is well described by a logarithmic term\hbox{$1/\textrm{log}(\frac{2}{3}|J_1|-J_{2})$}1/log(23|J1|?J2). To characterize the magnetic ordering below and aboveT C , we calculate thespin-spin correlation functions ?S 0 S R ?, the spontaneous magnetization, the uniform static susceptibilityχ 0 as well as the correlation lengthξ.Moreover, we discuss the specific heat C V and the temperaturedependence of the excitation spectrum. As approaching the transition point\hbox{$J_2^c$}J2csome unusual features were found, such as negativespin-spin correlations at temperatures above T C even though theground state is ferromagnetic or an increase of the spin stiffness with growingtemperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号