首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three novel compounds bearing 2,7-dihydroxylnaphthalene capable of detecting Cu2+ or Fe3+ have been synthesised based on photoinduced electron transfer. The ability of these compounds for complex transition metal ions has been studied, and complex stoichiometry for Cu2+ and Fe3+ complex has been determined in the Tris–HCl (0.01 M DMSO/H2O (v/v) 1:1, buffer, pH 7.4) solution system by fluorescence titration experiments. These chemosensors form a 1:1 complex with Cu2+ or Fe3+ and show a fluorescent quenching with a binding constant of (4.46 ± 0.29) × 103 and (8.04 ± 0.26) × 104, respectively.  相似文献   

2.
ABSTRACT

Perimedine labelled rhodamine dye 1 has been designed and synthesised. Metal ion binding studies of 1 have been performed in CH3CN/H2O (3:1, v/v, 10 mM Tris-HCl buffer, pH = 6.90). Compound 1 senses multiple metal ions such as Al3+, Fe3+ and Fe2+ by exhibiting turn on fluorescence and colour change (colourless to pink) under different experimental conditions. Concentration variation distinguishes Al3+ from Fe3+ ion. At low concentration (c = 1 x 10?4 M), only Al3+ ion can exhibit turn on fluorescence with sharp colour change. Sensing of Fe2+ ion through turn on fluorescence and colour change has been possible via in situ oxidation by following Fenton’s reaction.  相似文献   

3.
A new lawsone-based azo-dye 2-hydroxy-3-((pyridin-2-ylmethyl)diazenyl)naphthalene-1,4-dione (1) was synthesized and applied for sensing of metal ions. Receptor 1 showed selective fluorescent and colorimetric response for the detection of Cu2+ and Fe3+ over other tested metal ions. The fluorescence intensity of 1 was significantly quenched allowing detection of Fe3+ and Cu2+ down to 0.61 and 6.06 μM, respectively. The binding has been established by fluorescence spectroscopic method. Receptor 1 provided a 1?:?1 binding scaffold for recognition of Fe3+ and Cu2+ ions with the association constant of 3.33 × 106 and 3.33 × 105 M?1, respectively. The B3LYP/6-31G/LANL2DZ method was employed for the optimization of 1 and 1·Fe3+ and 1·Cu2+.  相似文献   

4.
A new fluorescent probe L based on the rhodamine 6G platforms for Fe3+ has been designed and synthesised. L showed excellent selectivity and high sensitivity for Fe3+ against other metal ions such as K+, Na+, Ag+, Cu2+, Co2+, Mg2+, Cd2+, Ni2+, Zn2+, Fe2+, Hg2+, Ce3+ and Y3+ in HEPES buffer (10 mM, pH 7.4)/CH3CN (40:60, V/V). The distinct color change and the rapid emergence of fluorescence emission provided naked-eyes detection for Fe3+. The recognition mechanism of the probe toward Fe3+ was evaluated by Job’s plots, IR and ESI-MS. In order to further study their fluorescent properties, L + Fe3+ fluorescence lifetime was also measured. Moreover, the test strip results showed that these probes could act as a convenient and efficient Fe3+ test kit.  相似文献   

5.
合成了2,4-二(2-噻吩乙烯基)-6-(4'-N,N-二甲氨基苯乙烯基)-1,3,5-均三嗪(2)并鉴定了其结构。在乙腈-水混合介质中,化合物2在355和416nm处呈现双吸收峰,加入Cu2+,Hg2+ 和Fe3+ 后,均在520nm附近形成新的吸收峰。化合物2与Cu2+、Hg2+ 和Fe3+ 均形成1:1型配合物,其结合常数分别为1.9×105L·mol-1,6.6×103L·mol-1,2.7×103L·mol-1。对照化合物4与金属离子的光谱响应与化合物2相似,仅吸收峰的位置不同。因此,可认为化合物24中三嗪环中的N和噻吩环中的S与Cu2+、Hg2+ 和Fe3+ 共同配位形成了稳定的金属配合物。  相似文献   

6.
Naphthalene and pyrrole substituted guanidine 1 has been designed and synthesised. Compound 1 efficiently distinguishes Cu2+, Hg2+ and Pb2+ ions by exhibiting different responses in fluorescence. While compound 1 exhibited turn-on emission selectively in the presence of Hg2+ and Pb2+ ions in CH3CN and CH3CN–H2O (1:1, v/v), respectively, it showed decrease in emission upon interaction with Cu2+ ion in CH3CN. Furthermore, the Cu-1 ensemble has been established as a potential probe for selective detection of CN? ion over a series of other anions involving colour change (in ordinary light: colourless to light yellow and under UV light: colourless to sky blue). Theoretical insight has been invoked to understand the mode of metal–ligand interaction.  相似文献   

7.
In this work, we have successfully developed novel silver nanoconjugates of pyrazolone analogue and screened its chemosensing potential in aqueous medium. Bispyrazolone silver nanoparticles (Bispyra-AgNPs) were synthesised and characterised through FTIR, UV-visible spectroscopy and atomic force microscopy. The sensing ability was explored towards Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Li+, Pb2+, La3+, Hg2+, Mg2+, Ni2+ and Ba2+ metal ions, respectively. Bispyra-AgNPs showed a highly quenching potential in selective recognition of Cu2+and colour of the solution immediately turned from yellow to purple, after the addition of Cu2+ in to the solution. The developed method also displayed a remarkable selectivity for Cu2+ over others interfering metal ions. The binding ratio and stoichiometry of host-guest complex was found to be 1:1 and determined by Job’s method. The propose method is facile and sensitive to detect Cu2+ with detection limit of 10 µM.  相似文献   

8.
Here, we report an ultra-sensitive and colorimetric sensor for the detection of Fe3+ or Cu2+ successively using glutathione-functionalized Au nanoclusters (GSH-AuNCs). For GSH-AuNCs can catalytically oxidize peroxidase substrates, such as 3, 3′, 5, 5′-tetramethylbenzidine (TMB), colored products are formed in the presence of H2O2. While upon the addition of Fe3+ or Cu2+ into the GSH-AuNCs-TMB-H2O2 system, diverse color and absorbance of the system was obtained due to the self oxidation of Fe3+ and the inhibition of peroxidase-like activity of GSH-AuNCs. With the introduction of ethylene diamine tetraacetic acid (EDTA) or ammonium fluoride (NH4F) to GSH-AuNCs-TMB-H2O2+Cu2+ system or GSH-AuNCs-TMB-H2O2+Fe3+ system respectively, a restoration of color and absorbance of system was realized. On the basis of above phenomenon, a colorimetric and quantitative approach for detecting Fe3+ and Cu2+ was developed with detection limit of 1.25 × 10−9 M and 1.25 × 10−10 M respectively. Moreover, the concentration of Fe3+ and Cu2+ in human serums was also accurate quantified by this method. So this design strategy realized the simple and simultaneous detection of Fe3+ and Cu2+, suggesting significant potential in clinical diagnosis.  相似文献   

9.
In this article, a sensitive and selective turn-off fluorescence chemosensor, Tyloxapol (one kind of water soluble oligomer), was developed for the label-free detection of Fe3+ ions in aqueous solution. Fluorescence (FL) experiments demonstrated that Tyloxapol was a sensitive and selective fluorescence sensor for the detection of Fe3+ directly in water over a wide range of metal cations including Na+, K+, Ag+, Hg2+, Cd2+, Co2+, Cu2+, Cr3+, Mn2+, Ba2+, Zn2+, Ni2+, Mg2+, Ca2+, and Pb2+. Moreover, the fluorescence intensity of Tyloxapol has shown a linear response to Fe3+ in the concentration range of 0–100 μmol L−1 with a detection limit of 2.2 μmol L−1 in aqueous solution. Next, based on a competition mechanism, another turn-on sensing application of the Tyloxapol/Fe3+ platform to probe dopamine (DA) against various other biological molecules such as other neurotransmitters or amino acids (norepinephrine bitartrate, acetylcholine chloride, alanine, valine, phenylalanine, tyrosine, leucine, glycine, histidine) were also investigated. It is expected that our strategy may offer a new approach for developing simple, cost-effective, rapid and sensitive sensors in biological and environmental applications.  相似文献   

10.
Nanostructured polypyrrole (PPy) film doped with Tiron was electrodeposited from aqueous solution on the surface of transparent electrode and used for sensitive, selective and rapid electrically controlled fluorescence detection of Fe3+ in aqueous media. The fluorescence intensity of PPy-Tiron film decreases linearly in the presence of Fe3+ by applying negative potential over a concentration range from 5.0 × 10−8 to 1.0 × 10−6 mol L−1, with a relatively fast response time of less than 30 s at pH 7.4. The detection is not affected by the coexistence of other competitive metal ions such as Al3+, Ce3+, Tl3+, La3+, Bi3+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+, Na+, K+, Mg2+, Ca2+, Sr2+ and Ba2+. The proposed electro-fluorescence sensor has a potential application to the determination of Fe3+ in environmental and biological systems. The fluorescent thin film sensor was also used as a novel probe for Fe3+/Fe2+ speciation in aqueous solution.  相似文献   

11.
12.
Meng Q  Zhang X  He C  Zhou P  Su W  Duan C 《Talanta》2011,84(1):53-59
A novel hybrid material (SBA-P1) is prepared through the functionalization of mesoporous silica (SBA-15) with a 1,8-naphthalimide-based dye by sol-gel reaction. The characterization results of elemental analysis (EA), X-ray powder diffractometer (XRD) and spectroscopic methods demonstrate the fluorescence dye P1 is successfully grafted onto the inner surface of SBA-15 and the organized structure is preserved. SBA-P1 can detect Hg2+ with high selectivity to Cu2+, Zn2+, Cd2+, Pb2+, Mn2+, Ni2+, Co2+, Ag+, Cr3+, and Mg2+, Ca2+, Li+, Na+, K+ in water and sensitivity to environmentally relevant mercury in complex natural samples. The quenching fluorescence detection is also reversible by treating with EDTA/base. Furthermore, its fluorescence intensity keeps stable in the physiologically relevant pH range. The extraction ability of SBA-P1 is also estimated by inductively coupled plasma source mass spectrometer (ICP), showing that approximately 90% of the Hg2+ ion is extracted. These results imply that the hybrid material has potential application for sensing and removing of Hg2+ ions in waste water and working as toxicide for acute mercury poisoning.  相似文献   

13.
Graphene quantum dots (GQDs), inheriting the superb property of graphene oxide, possess smaller lateral size and high biocompatibility, thus having potential in biomedical applications. We previously discovered that GQDs, combining with Cu2+ ions, could cleave DNA primarily through an oxidative pathway; yet, oxidative DNA cleavage is not practically preferred in biology. In this work, we explore the DNA cleavage ability of GQDs with Zn2+ and Ni2+. Zn2+ and Ni2+ alone are incapable of cleaving supercoiled DNA, but when combining with the GQDs, Zn2+ and Ni2+ exhibit DNA cleavage activity. However, the activity of these two systems is much lower than that of GQDs/Cu2+, and GQDs/Ni2+ is less active than GQDs/Zn2+. The functional mechanism of GQDs/Ni2+ and GQDs/Zn2+ is different from that of GQDs/Cu2+. The GQDs play a key role in the two systems; the redox inactive Zn2+ and Ni2+ ions assist to generate the oxidative species that eventually lead to the DNA cleavage. The current results together with our previous result indicate that GQDs together with metal ions can cleave supercoiled DNA, and their cleavage activities depend on the properties of metal ions: for redox active metal ions, metal ions play key roles, for redox inactive metal ions, GQDs are dominant.  相似文献   

14.
A new glucose-based C2-derivatized colorimetric chemo-sensor (L1) has been synthesized by a one-step condensation of glucosamine and 2-hydroxy-1-naphthaldehyde for the recognition of transition metal ions. Among the eleven metal ions studied, viz., Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, L1 results in visual colour change only in the presence of Fe2+, Fe3+and Cu2+ in methanol. However, in an aqueous HEPES buffer (pH 7.2) it is only the Fe3+ that gives a distinct visual colour change even in the presence of other metal ions, up to a concentration of 280 ppb. The changes have been explained based on the complex formed, and the composition has been determined to be 2:1 between L1 and Fe3+ based on Job’s plot as well as ESI MS. The structure of the proposed complex has been derived based on HF/6-31G calculations.  相似文献   

15.
A novel single-armed Salamo-type bisoximes (H4L) has been designed and synthesised. An obvious colour change from yellow (H4L) to pale pink (HL-Pb2+) which can be visually observed by the naked eye in visible light. H4L can act as a fluorescent sensor for ratiometric recognition of Zn2+ with high selectivity and sensitivity. Crystallographic data of the [Cu(HL)(μ-OAc)Cu] reveals that the two Cu2+ ions are both penta-coordinated with square pyramidal geometries, and forms a 2D supramolecular plane structure by hydrogen bonding interactions.  相似文献   

16.
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu2+ and Zn2+ in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn2+ and Cu2+ ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu2+ and Zn2+ ions, respectively. Further, we have effectively utilized the two metal ions (Cu2+ and Zn2+) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm.  相似文献   

17.
In this research, we successfully synthesized and fully characterized the new compound 5,8,13,16,21,24‐hex‐(triisopropylsilyl)ethynyl)‐6,23‐dihydro‐6,7,14,15,22,23‐hexaza‐trianthrylene ( HHATA , brown color in a mixed solvent of CH2Cl2/CH3CN 1:1, v/v, weakly blue fluorescent), which can be easily oxidized to 5,8,13,16,21,24‐hex‐(triisopropylsilyl)ethynyl)‐6,7,14,15,22,23‐hexazatrianthrylene ( HATA ) (yellow color in CH2Cl2/CH3CN 1:1, v/v), red fluorescent) by Cu2+ ions. This reaction only proceeds efficiently in the presence of Cu2+ ions when compared with other common metal ions such as Fe3+, Co2+, Mn2+, Hg2+, Ni2+, Pb2+, Ag+, Mg2+, Ca2+, K+, Na+, and Li+. Our result suggests that this reaction can be developed as an effective method for the detection of Cu2+ ions.  相似文献   

18.
Calcium and barium zirconate powders based upon CaZrO3:Eu3+,A and BaZrO3:Eu3+,A (A=Li+, Na+, K+) were prepared by combustion synthesis method and heating to ~1000℃ to improve crystallinity.The structure and morphology of materials were examined by X-ray diffraction (XRD) and scanningelectron microscopy (SEM). XRD results showed that CaZrO3:Eu3+,A and BaZrO3:Eu3+,A (A=Li+, Na+, K+) perovskites possessed orthorhombic and cubic structures, respectively. The morphologies of all powderswere very similar consisting of small, coagulated, cubical particles with narrow size distributions andsmooth and regular surfaces. The characteristic luminescences of Eu3+ ions in CaZrO3:Eu3+,A (A=Li+, Na+, K+) lattices were present with strong emissions at 614 and 625 nm for 5D07F2 transitions with other weakeremissions observed at 575, 592, 655, and 701 nm corresponding to 5D07Fn transitions (where n=0, 1, 3, 4 respectively). In BaZrO3:Eu3+ both the 5D07F1 and 5D07F2 transitions at 595 and 613 nm were strong.Photoluminescence intensities of CaZrO3:Eu3+ samples were higher than those of BaZrO3:Eu3+ lattices. Thisremarkable increase of photoluminescence intensity (corresponding to 5D07Fn transitions) was observedin CaZrO3:Eu3+ and BaZrO3:Eu3+ if co-doped with Li+ ions. An additional broad band composed of manypeaks between 440 to 575 nm was observed in BaZrO3:Eu3+,,A samples. The intensity of this band wasgreatest in Li+ co-doped samples and lowest for K+ doped samples.  相似文献   

19.
A series of novel, water-soluble benzimidazolium salts with common ‘fluorophorespacerreceptor’ PET design has been synthesized. Despite the common PET scaffold these benzimidazolium salts displayed diverse emission intensities in pure aqueous solutions. The observed emission intensities were found to be influenced by the functionalized alkyl side arms present on the benzimidazolium ring. These benzimidazolium salts were also found to act as selective sensors for Fe3+ ions over other metal ions like Na+, K+, Ca2+, Mg2+, Ba2+, Al3+, Cr3+, Co2+, Ni2+, Mn2+, Zn2+, Pb2+, Ag+, Cu2+ and Hg2+ in pure aqueous media.  相似文献   

20.
Silica gels doped with Cu2+ ions were prepared from the (3-aminopropyl) trimethoxysilane (APTMOS)/tetraethoxysilane (TEOS) systems. Sols showed a broad absorption peak at 640 nm, suggesting 3–5 coordination of the aminopropyl groups to Cu2+. For gels prepared from APTMOS and dried at room temperature, the 640 nm peak decreased and a red-shifted absorption appeared below 400 nm within a few months. The luminescence spectra of the xerogels showed emission bands at 430–470 and 510 nm. The former and latter bands are ascribed to Cu+ monomer and dimer emissions, respectively. These results indicate that Cu2+ ions are reduced to Cu+. When xerogels were prepared from APTMOS/TEOS = 1 (vol/vol), the color of xerogels was blue with an absorption peak at around 670 nm, indicating no reduction of Cu2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号