首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Motivated by the increasing importance of large‐scale networks typically modeled by graphs, this paper is concerned with the development of mathematical tools for solving problems associated with the popular graph Laplacian. We exploit its mixed formulation based on its natural factorization as product of two operators. The goal is to construct a coarse version of the mixed graph Laplacian operator with the purpose to construct two‐level, and by recursion, a multilevel hierarchy of graphs and associated operators. In many situations in practice, having a coarse (i.e., reduced dimension) model that maintains some inherent features of the original large‐scale graph and respective graph Laplacian offers potential to develop efficient algorithms to analyze the underlined network modeled by this large‐scale graph. One possible application of such a hierarchy is to develop multilevel methods that have the potential to be of optimal complexity. In this paper, we consider general (connected) graphs and function spaces defined on its edges and its vertices. These two spaces are related by a discrete gradient operator, ‘Grad’ and its adjoint, ‘ ? Div’, referred to as (negative) discrete divergence. We also consider a coarse graph obtained by aggregation of vertices of the original one. Then, a coarse vertex space is identified with the subspace of piecewise constant functions over the aggregates. We consider the ?2‐projection QH onto the space of these piecewise constants. In the present paper, our main result is the construction of a projection πH from the original edge‐space onto a properly constructed coarse edge‐space associated with the edges of the coarse graph. The projections πH and QH commute with the discrete divergence operator, that is, we have Div πH = QH div. The respective pair of coarse edge‐space and coarse vertex‐space offer the potential to construct two‐level, and by recursion, multilevel methods for the mixed formulation of the graph Laplacian, which utilizes the discrete divergence operator. The performance of one two‐level method with overlapping Schwarz smoothing and correction based on the constructed coarse spaces for solving such mixed graph Laplacian systems is illustrated on a number of graph examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A unicyclic graph is a graph whose number of edges is equal to the number of vertices. Guo Shu-Guang [S.G. Guo, The largest Laplacian spectral radius of unicyclic graph, Appl. Math. J. Chinese Univ. Ser. A. 16 (2) (2001) 131–135] determined the first four largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices. In this paper, we extend this ordering by determining the fifth to the ninth largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices.  相似文献   

4.
设U*为一个未定向的n个顶点上的单圈混合图,它是由一个三角形在其某个顶点上附加n-3个悬挂边而获得.在文[Largest eigenvalue of a unicyclic mixed graph,Applied Mathematics A Journal of Chinese Universities(Ser.B),2004,19(2):140-148]中,作者证明了:在相差符号同构意下,在所有n个顶点上的单圈混合图中,U*是唯一的达到最大Laplace谱半径的混合图.本文应用非负矩阵的Perron向量,给出上述结论的一个简单的证明.  相似文献   

5.
设U*为一个未定向的n个顶点上的单圈混合图,它是由一个三角形在其某个顶点上附加”一3个悬挂边而获得.在文[Largest eigenvalue of aunicyclic mixed graph,Applied Mathematics A Journal of Chinese Universities (Ser.B),2004,19(2):140-J48]中,作者证明了:在相差符号同构意下,在所有n个顶点上的单圈混合图中,U*是唯一的达到最大Laplace谱半径的混合图.本文应用非负矩阵的Perron向量,给出上述结论的一个简单的证明.  相似文献   

6.
The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the graph. In our recent work, we have determined the graphs with maximal Laplacian spreads among all trees of fixed order and among all unicyclic graphs of fixed order, respectively. In this paper, we continue the work on Laplacian spread of graphs, and prove that there exist exactly two bicyclic graphs with maximal Laplacian spread among all bicyclic graphs of fixed order, which are obtained from a star by adding two incident edges and by adding two nonincident edges between the pendant vertices of the star, respectively.  相似文献   

7.
The signless Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the smallest eigenvalue of its signless Laplacian matrix. In this paper, we determine the first to llth largest signless Laplacian spectral radii in the class of bicyclic graphs with n vertices. Moreover, the unique bicyclic graph with the largest or the second largest signless Laplacian spread among the class of connected bicyclic graphs of order n is determined, respectively.  相似文献   

8.
In this paper,we determine the unique graph with the largest signless Laplacian spectral radius among all the tricyclic graphs with n vertices and k pendant vertices.  相似文献   

9.
In this paper,we determine the unique graph with the largest signless Laplacian spectral radius among all the tricyclic graphs with n vertices and k pendant vertices.  相似文献   

10.
In this paper, we give some results on Laplacian spectral radius of graphs with cut vertices, and as their applications, we also determine the unique graph with the largest Laplacian spectral radius among all unicyclic graphs with n vertices and diameter d, 3?d?n−3.  相似文献   

11.
图的谱半径和Laplacian谱半径分别是图的邻接矩阵和Laplacian矩阵的最大特征值.本文中,我们分别刻画了围长为g且有k个悬挂点的单圈图的谱半径和Laplacian谱半径达到最大时的极图.  相似文献   

12.
A tricyclic graph G =(V(G), E(G)) is a connected and simple graph such that|E(G)| = |V(G)|+2. Let Tg nbe the set of all tricyclic graphs on n vertices with girth g. In this paper, we will show that there exists the unique graph which has the largest signless Laplacian spectral radius among all tricyclic graphs with girth g containing exactly three(resp., four)cycles. And at the same time, we also give an upper bound of the signless Laplacian spectral radius and the extremal graph having the largest signless Laplacian spectral radius in Tg n,where g is even.  相似文献   

13.
In data science, data are often represented by using an undirected graph where vertices represent objects and edges describe a relationship between two objects. In many applications, there can be many relations arising from different sources and/or different types of models. Clustering of multiple undirected graphs over the same set of vertices can be studied. Existing clustering methods of multiple graphs involve costly optimization and/or tensor computation. In this paper, we study block spectral clustering methods for these multiple graphs. The main contribution of this paper is to propose and construct block Laplacian matrices for clustering of multiple graphs. We present a novel variant of the Laplacian matrix called the block intra‐normalized Laplacian and prove the conditions required for zero eigenvalues in this variant. We also show that eigenvectors of the constructed block Laplacian matrix can be shown to be solutions of the relaxation of multiple graphs cut problems, and the lower and upper bounds of the optimal solutions of multiple graphs cut problems can also be established. Experimental results are given to demonstrate that the clustering accuracy and the computational time of the proposed method are better than those of tested clustering methods for multiple graphs.  相似文献   

14.
A graph that can be constructed from isolated vertices by the operations of union and complement is decomposable. Every decomposable graph is Laplacian integral. i.e., its Laplacian spectrum consists entirely of integers. An indecomposable graph is not decomposable. The main purpose of this note is to demonstrate the existence of infinitely many indecomposable Laplacian integral graphs.  相似文献   

15.
Let G be a connected simple graph on n vertices. The Laplacian index of G, namely, the greatest Laplacian eigenvalue of G, is well known to be bounded above by n. In this paper, we give structural characterizations for graphs G with the largest Laplacian index n. Regular graphs, Hamiltonian graphs and planar graphs with the largest Laplacian index are investigated. We present a necessary and sufficient condition on n and k for the existence of a k-regular graph G of order n with the largest Laplacian index n. We prove that for a graph G of order n ⩾ 3 with the largest Laplacian index n, G is Hamiltonian if G is regular or its maximum vertex degree is Δ(G) = n/2. Moreover, we obtain some useful inequalities concerning the Laplacian index and the algebraic connectivity which produce miscellaneous related results. The first author is supported by NNSF of China (No. 10771080) and SRFDP of China (No. 20070574006). The work was done when Z. Chen was on sabbatical in China.  相似文献   

16.
Broadcasting is the process of information dissemination in a communication network in which a message, originated by one member, is transmitted to all members of the network. A broadcast graph is a graph which permits broadcasting from any originator in minimum time. The broadcast function B(n) is the minimum number of edges in any broadcast graph on n vertices. In this paper, we construct a broadcast graph on 26 vertices with 42 edges to prove B(26) = 42.  相似文献   

17.
确定具有n个顶点e条边的图的Laplace的最大谱半径.  相似文献   

18.
We give a sharp bound for the order of the automorphism group of a connected simple cubic graph on a given number of vertices. For each number of vertices we construct a graph, unique in special cases, attaining the bound. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 99–115, 2010  相似文献   

19.
In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with n vertices and k pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with n vertices and k pendant vertices, respectively.  相似文献   

20.
对于一个简单图G, 方阵Q(G)=D(G)+A(G)称为G的无符号拉普拉斯矩阵,其中D(G)和A(G)分别为G的度对角矩阵和邻接矩阵. 一个图是Q整图是指该图的无符号拉普拉斯矩阵的特征值全部为整数.首先通过Stanic 得到的六个顶点数目较小的Q整图,构造出了六类具有无穷多个的非正则的Q整图. 进而,通过图的笛卡尔积运算得到了很多的Q整图类. 最后, 得到了一些正则的Q整图.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号