首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shaping command input or preshaping is used for reducing system oscillation in motion control. Desired systems inputs are altered so that the system finishes the requested move without residual oscillation. This technique, developed by N.C. Singer and W.P. Seering, is used for example in the aerospace field, in particular in flexible structure control. This paper presents the study of ZV shaper for explicit fractional derivative systems (generalized derivative systems). A robustness study of ZV shaper is then presented and applied to improve second generation CRONE control response time. Results from simulation and from a DC motor bench are also given.  相似文献   

2.
Command profiles are required to move a dynamical system from rest to rest without residual vibration in a minimum time. The unity-magnitude (UM) input shaper is one of the faster input shaping techniques. However, analytical solution of the impulse time locations is impossible due to the dependent residual vibration constraint equations. Many researchers solve these by using curve fitting. In this paper, the characteristics of the UM shaping coefficients as a function of system parameters are investigated. An analysis procedure to obtain UM input shaper impulse time sequences is presented. Finally, the proposed technique is compared to the zero vibration (ZV) shaper in both response and robustness to modeling error.  相似文献   

3.
基于混合EI成型器的多模态柔性结构振动控制   总被引:1,自引:0,他引:1  
张鹏  李元春 《力学学报》2010,42(4):774-781
提出了一种基于零点配置技术的EI(extra-insensitive)成型器设计方法. 通过偏值点, 将基于零点配置的传统ZV成型器转换为EI成型器或者ZVD成型器, 并且保持延迟时间与脉冲数量不变. 基于偏值点设计了二阶混合EI成型器和Multi-EI成型器, 该成型器在延迟时间不变的情况下鲁棒性得到很大提高. 利用成型器具有周期性的特点, 设计了一种多模态柔性结构振动控制方法, 在保证延迟时间差别不大情况下, 使成型器的脉冲数量有明显减少. 仿真结果验证了该方法的有效性.   相似文献   

4.
倪韵竹  戈新生 《应用力学学报》2020,(1):293-300,I0020,I0021
利用输入整形与PD(比例微分)控制相结合的主动振动控制策略,在保证航天器完成三轴姿态机动的同时抑制太阳帆板的振动。首先,基于角动量定律和拉格朗日法建立了带挠性太阳帆板航天器的动力学模型。然后,在动力学模型的基础上,采用PD控制作为航天器三轴姿态机动的控制策略,利用挠性太阳帆板各阶模态的固有频率和阻尼比得到系统的输入整形器,对原始姿态机动的脉冲进行输入整形前馈控制,以抑制太阳帆板各阶模态的振动。仿真结果表明:两种输入整形方法均能抑制太阳帆板的振动,ZV(零残余振动)输入整形器简单且脉冲数量少,输入时间较短,但对于参数摄动以及输入的微小误差比较敏感,抑制振动的效果难以满足零残余振动的标准;ZVD(微分零残余振动)输入整形器脉冲数量较多,具有一定量的延时,但更为高效,鲁棒性强,能够极大地抑制挠性太阳帆板的残余振动,缩短航天器的机动稳定时间,且整个机动过程更加平稳。  相似文献   

5.
Sufficient conditions for the technical stability in measure of a nonstationary control system with variable structure are established. The controller of the system has feedback-switched filters functioning together with shaper and actuator. It is assumed that the nonstationary parameters of the system vary within given ranges, at a finite rate, with appropriate control laws, with adjustment against mismatch signal, its derivatives of finite order, and all variable parameters of the filter. The parameters of the switching hyperplane remain constant. This approach for analysis of technical stability does not involve sliding mode conditions. Criteria of technical instability in measure for the control system under consideration are formulated using the properties of systems of comparison from below. The general criteria of technical stability and instability are applied to nonstationary filtered-control systems of variable structure of the third order. The comparison method based on normalized Lyapunov functions is used __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 6, pp. 110–127, June 2006.  相似文献   

6.
In remote sensing or laser communication space missions, spacecraft need fast maneuver and fast stabilization in order to accomplish agile imaging and attitude tracking tasks. However, fast attitude maneuvers can easily cause elastic deformations and vibrations in flexible appendages of the spacecraft. This paper focuses on this problem and deals with the combined control of fast attitude maneuver and sta- bilization for large complex spacecraft. The mathematical model of complex spacecraft with flexible appendages and momentum bias actuators on board is presented. Based on the plant model and combined with the feedback controller, modal parameters of the closed-loop system are calculated, and a multiple mode input shaper utilizing the modal information is designed to suppress vibrations. Aiming at reducing vibrations excited by attitude maneuver, a quintic polynomial form rotation path planning is proposed with constraints on the actuators and the angular velocity taken into account. Attitude maneuver simulation results of the control systems with input shaper or path planning in loop are sepa- rately analyzed, and based on the analysis, a combined control strategy is presented with both path planning and input shaper in loop. Simulation results show that the combined control strategy satisfies the complex spacecraft's require- ment of fast maneuver and stabilization with the actuators' torque limitation satisfied at the same time.  相似文献   

7.
The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law.  相似文献   

8.
三种分形和分数阶导数阻尼振动模型的比较研究   总被引:2,自引:0,他引:2  
标准的整数阶导数方程不能准确描述粘弹性材料的记忆性参考文献[1]和阻尼的分数次幂频率依赖[2],因此分形导数、分数阶导数及正定分数阶导数被用于描述粘弹性介质中的阻尼振动.该文通过分析模型和数值模拟,比较了三种模型描述的振动过程.结果显示,当p小于约O.75或大于约1.9时(p为非整数阶导数的阶数),分形导数模型衰减最快;当P大于约0.75且小于约1.9时,正定分数阶导数模型衰减最快,衰减最慢的分别为分数阶导数模型(p<1)和分形导数模型(p>1).且正定分数阶导数模型衰减快于分数阶导数模型,当p接近2时,两种模型较为相近.  相似文献   

9.
Aiming to solve the low positioning accuracy problem of traditional ammunition autoloaders with base oscillation and payload uncertainty, and achieve arbitrary angle loading for the tank gun, this paper presents a trajectory tracking control for a novel ammunition autoloader. The proposed control is composed of computer torque method and an implicit Lyapunov control. The computer torque method is used to linearize and decouple the system dynamics. The implicit Lyapunov control, which could be interpreted as a proportional derivative (PD) control with continuous time-varying gains, is used to stabilize the linearized uncertain system. Simulation results show that the proposed control greatly compensates the effects of the disturbances caused by base oscillation and payload uncertainty, realizing robust trajectory tracking control of the system, but the control forces always satisfy given constraints.  相似文献   

10.
基于广义预测控制的结构半主动控制研究   总被引:2,自引:0,他引:2  
相对于主动控制和被动控制来讲,半主动控制具有一些更好的特色,对结构控制的应用有着较强的吸引力。本文以可调液柱阻尼器(TLCD)作为作动器来实现结构半主动控制,考虑到TLCD具有非线性阻尼特性,为了使结构控制能够顺利实现,本文采用了阶跃控制函数。为了使TLCD能够应用于实际结构,本文研究了基于离散状态方程的广义预测控制方法,并提出了单向控制策略。本文最后给出了计算实例。算例表明这一方法是有效的。  相似文献   

11.
This paper presents a configuration manifold model for the analysis of dynamic systems and the development of control algorithms from both geometrical and topological points of view. The fundamental theory of surfaces and differential manifolds endowed with Riemannian metrics is overviewed. The concepts of configuration manifolds (C-manifolds) and their immersions and embeddings are then introduced and applied to dynamic systems modeling. An explicit form of the smooth embedding for a given dynamic system with its C-manifold is derived. In an open serial-chain robotic system, a topological equivalence, i.e. a homeomorphism, is found and shown to be useful for dynamic model reduction. With topology being viewed as the structure of geometry, we discover and prove that the kinematics of a dynamic system determines its topology so that the kinematics is virtually a structure of the system's dynamics. This key point of view is further extended to the development of an adaptive control strategy. A computer simulation study is finally performed to verify the proposed model and adaptive control scheme.  相似文献   

12.
Control of underactuated mechanical systems with servo-constraints   总被引:1,自引:0,他引:1  
This paper deals with a class of controlled mechanical systems in which the number of control inputs, equal to the number of desired system outputs, is smaller than the number of degrees of freedom. The related inverse dynamics control problem, i.e., the determination of control input strategy that force the underactuated system to complete the partly specified motion, is a challenging task. In the present formulation, the desired system outputs, expressed in terms of the system states, are treated as servo-constraints on the system, and the problem is viewed from the constrained motion perspective. Mixed orthogonal-tangent realization of the constraints by the available control reactions is stated, and a specialized methodology for solving the “singular” control problem is developed. The governing equations are manipulated to index three differential-algebraic equations, and a simple numerical code for solving the equations is proposed. The feedforward control law obtained as a solution to these equations can then be enhanced by a closed-loop control strategy with feedback of the actual servo-constraint violations to provide stable tracking of the reference motion in the presence of perturbations and modeling uncertainties. An overhead trolley crane executing a load-prescribed motion serves as an illustration. Some results of numerical simulations are reported.  相似文献   

13.
Bilello  C.  Di Paola  M.  Pirrotta  A. 《Meccanica》2002,37(1-2):207-220
Time delay in the active control can be caused by measurements of system states, by physical properties of the equipment used for the control itself. The time delay induced effects on control of linear or non-linear systems may cause unsynchronization in the application of the control forces, efficacy loss and instability as well. In this paper the time delay effects on non-linear systems under normal white noise is studied, an approximated approach based on the Taylor expansion of the control forces is introduced. It is shown that in the case of non-linear systems and non-linear control forces by means of the Taylor expansion the original system excited by external white noise is transformed into another one under parametric type excitation. Numerical studies show the reliability of this technique in the study of time delay effects on control of non-linear systems.  相似文献   

14.
本文研究 Birkhoff 系统和广义 Birkhoff 系统平衡稳定性的动力学控制. 首先建立系统的运动方程和平衡方程. 其次,研究 Birkhoff 系统中控制参数出现在 Birkhoff 函数中平衡稳 定性的动力学控制. 方法是通过选取控制参数使得 Birkhoff 函数 $B$ 成为定号函数,而其时间导数 $\dot {B}$ 为与 $B$ 反号的常号函数. 再次,研究广义 Birkhoff 系统平衡稳定性的动力学控制,通过选取 Birkhoff 函数或附加项中包含控制参数的方法,使得 Birkhoff 函数是定号函数,而其时间导数为反号的常号函数,从而控制系统的平衡稳定性. 最后举例说明结果的应用.  相似文献   

15.
Accurate modeling of many dynamic systems leads to a set of Fractional Differential Equations (FDEs). This paper presents a general formulation and a solution scheme for a class of Fractional Optimal Control Problems (FOCPs) for those systems. The fractional derivative is described in the Riemann–Liouville sense. The performance index of a FOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of FDEs. The Calculus of Variations, the Lagrange multiplier, and the formula for fractional integration by parts are used to obtain Euler–Lagrange equations for the FOCP. The formulation presented and the resulting equations are very similar to those that appear in the classical optimal control theory. Thus, the present formulation essentially extends the classical control theory to fractional dynamic system. The formulation is used to derive the control equations for a quadratic linear fractional control problem. An approach similar to a variational virtual work coupled with the Lagrange multiplier technique is presented to find the approximate numerical solution of the resulting equations. Numerical solutions for two fractional systems, a time-invariant and a time-varying, are presented to demonstrate the feasibility of the method. It is shown that (1) the solutions converge as the number of approximating terms increase, and (2) the solutions approach to classical solutions as the order of the fractional derivatives approach to 1. The formulation presented is simple and can be extended to other FOCPs. It is hoped that the simplicity of this formulation will initiate a new interest in the area of optimal control of fractional systems.  相似文献   

16.
Accurate modeling of many dynamic systems leads to a set of Fractional Differential Equations (FDEs). This paper presents a general formulation and a solution scheme for a class of Fractional Optimal Control Problems (FOCPs) for those systems. The fractional derivative is described in the Riemann–Liouville sense. The performance index of a FOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of FDEs. The Calculus of Variations, the Lagrange multiplier, and the formula for fractional integration by parts are used to obtain Euler–Lagrange equations for the FOCP. The formulation presented and the resulting equations are very similar to those that appear in the classical optimal control theory. Thus, the present formulation essentially extends the classical control theory to fractional dynamic system. The formulation is used to derive the control equations for a quadratic linear fractional control problem. An approach similar to a variational virtual work coupled with the Lagrange multiplier technique is presented to find the approximate numerical solution of the resulting equations. Numerical solutions for two fractional systems, a time-invariant and a time-varying, are presented to demonstrate the feasibility of the method. It is shown that (1) the solutions converge as the number of approximating terms increase, and (2) the solutions approach to classical solutions as the order of the fractional derivatives approach to 1. The formulation presented is simple and can be extended to other FOCPs. It is hoped that the simplicity of this formulation will initiate a new interest in the area of optimal control of fractional systems.  相似文献   

17.
Wagg  David J. 《Meccanica》2003,38(2):227-238
In this paper we consider using a model reference adaptive control approach to control nonlinear systems. We consider the controller design and stability analysis associated with these type of adaptive systems. Then we discuss the use of model reference adaptive control algorithms to control systems which exhibit nonlinear dynamical behaviour using the example of a Duffing oscillator being controlled to follow a linear reference model. For this system we show that if the nonlinearity is small then standard linear model reference control can be applied. A second example, which is often found in synchronization applications, is when the nonlinearities in the plant and reference model are identical. Again we show that linear model reference adaptive control is sufficient to control the system. Finally we consider controlling more general nonlinear systems using adaptive feedback linearization to control scalar nonlinear systems. As an example we use the Lorenz and Chua systems with parameter values such that they both have chaotic dynamics. The Lorenz system is used as a reference model and a single coordinate from the Chua system is controlled to follow one of the Lorenz system coordinates.  相似文献   

18.
Introducing fractional operators in the adaptive control loop, and especially in Model Reference Adaptive Control (MRAC), has proven to be a good mean for improving the plant dynamics with respect to response time and disturbance rejection. The idea of introducing fractional operators in adaptation algorithms is very recent and needs to be more established, that is why many research teams are working on the subject. Previously, some authors have introduced a fractional model reference in the adaptation scheme, and then fractional integration has been used to deal directly with the control rule. Our original contribution in this paper is the use of a fractional derivative feedback of the plant output, showing that this scheme is equivalent to the fractional integration, one with a certain benefit action on the system dynamical behaviour and a good robustness effect. Numerical simulations are presented to show the effectiveness of the proposed fractional adaptive schemes.  相似文献   

19.
Oscillation frequency of crane payloads is the main and most important factor in crane anti-sway control systems design. In the summer of 2005, a Smart Sway Control system (SSC) was installed on a 65-ton quay-side container crane at Jeddah Port. During the calibration phase of the installation, it was observed that heavy payloads combined with the dynamic stretch of the hoist cables had a significant impact on the configuration of the hoisting mechanism and the pattern of oscillation. This introduced considerable change in the oscillation frequency of the payload, which resulted in a significant impact on the performance of the anti-sway control system. Empirical formulas had to be used to compensate for the change in the frequency approximation used in the controller algorithm. In this work, an analytic approximation of the oscillation frequency of the hoisting mechanism of a quay-side container crane is developed, which takes into consideration the elasticity of the hoisting cables. A parametric study is performed to investigate the extent of the effect of the hoisting cables stretch on the system behavior for a typical range of payload masses and cable lengths. The performance of the delayed feedback control system used in the SSC controller is simulated on an elastic cables model using both the elastic and rigid cable frequency approximations.  相似文献   

20.
Stability conditions for a nonstationary automatic-control system of variable structure in sliding mode are established. The controller of the system has feedback-switched filters functioning together with the shaper and actuator. The nonstationary parameters of the system vary within given ranges, at a finite rate, under appropriate control laws, with adjustment for the error signal, its derivatives of finite order, and all variable parameters of the filter. The parameters of the switching hyperplane remain constant. This approach to stability analysis is based on the existence conditions for the sliding mode at the switching boundary in the phase space. The general stability and instability criteria are applied to nonstationary automatic filtered-control systems of variable structure of the third order __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 116–134, October 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号