首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The traction problem of elastostatics in two dimensions is formulated in terms of integral equations via the Airy stress function. The integral equations are solved numerically using piecewise constant approximations to the unknown functions. The validity of the formulation is demonstrated by its application to a simple problem with a known solution.  相似文献   

2.
Difference equations which may arise as discrete approximations to two-point boundary value problems for systems of second-order, ordinary differential equations are investigated and conditions are formulated under which solutions to the discrete problem are unique. Some existence, uniqueness implies existence, and convergence theorems for solutions to the discrete problem are also presented.  相似文献   

3.
This paper presents an integral equation formulation and its discretization scheme for the elastodynamic problem in which the material properties are prescribed as arbitrary, continuous and differentiable functions of the spatial coordinates. The formulation is made by using the Green's function for the corresponding problem in homogenous elasticity. From a weighted residual statement of the problem, the governing differential equation is transformed into a set of the integral equations in the inner domain as well as on the boundary. These integral equations are discretized by introducing a finite number of the boundary-volume-time elements, and the solution for the system of linear equations thus obtained is discussed.  相似文献   

4.
The analysis of scalar wave propagation in 2D zonewise homogeneous media with vanishing initial and mixed boundary conditions is carried out. The problem is formulated in terms of time‐dependent boundary integral equations, and then it is set in a weak form, based on a natural energy identity satisfied by the differential problem solution. Several numerical results have been obtained by means of the related energetic Galerkin boundary element method showing accuracy and stability of the method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
声波方程吸收边界条件的稳定性分析   总被引:3,自引:0,他引:3  
张关泉  魏素花 《计算数学》1998,20(1):103-112
引言对于无界区域中波动现象的数值模拟,必需引进人工边界将计算限制在一个有界区域上.为了确定解,需要在人工边界上加适当的边界条件.对于声波和弹性波方程,这样的一组人工边界条件,也叫吸收边界条件,在[1,2]中被系统地构造出来.对于声波方程,这些吸收边界条件恰好是单程波方程的近似.如山中所指出,减少边界反射,便于在计算中应用和稳定性是构造吸收边界条件的三点关键.Ellgqllist和Maid。用模态分析方法15]证明,带有[IJ中构造的吸收边界条件的波动方程初边值问题是适定的,并且估计了人工边界所产生的误差.对于更广…  相似文献   

6.
The method of lines for difference approximations of hyperbolic first order systems of partial differential equations is analyzed. The approximations are based on strictly semibounded difference operators including high order ones. The formulation of the ODE-system requires that the implementation of the boundary conditions is done carefully. We shall illustrate how different ways of implementation give rise to different stability properties. In particular, we derive a way of implementation that leads to an approximation that is strongly stable. It has been an open problem, whether for semidiscrete approximations with this strong stability property, the timestep for the ODE-solver is governed by the Cauchy problem. We present a counterexample showing that it is not. The analysis presented in this paper also serves as an illustration of the significant difference between different stability concepts.  相似文献   

7.
In this paper, we apply the coupling of the boundary integral and finite element methods to study the weak solvability of certain nonmonotone nonlinear exterior boundary value problems. In order to convert the original exterior problem into an equivalent nonlocal boundary value problem on a finite region, we employ two different approaches based on the use of one and two integral equations on the coupling boundary. Existence of a solution for the associated weak formulation, and convergence properties of the corresponding Galerkin approximations are deduced from fundamental results in nonlinear functional analysis. Indeed, the main arguments of our proofs are based on a surjectivity theorem for mappings of type (S) and on the Fredholm alternative for nonlinear A-proper mappings.  相似文献   

8.
The buckling of a pin-ended slender rod subjected to a horizontal end load is formulated as a nonlinear boundary value problem. The rod material is taken to be governed by constitutive laws which are nonlinear with respect to both bending and compression. The nonlinear boundary value problem is converted to a suitable integral equation to allow the application of bounded operator methods. By treating the integral equation as a bifurcation problem, the branch points (critical values of load) are determined and the existence and form of nontrivial solutions (buckled states) in the neighborhood of the branch points is established. The integral equation also affords a direct attack upon the question of uniqueness of the trivial solution (unbuckled state). It is shown that, under certain conditions on the material properties, only the trivial solution is possible for restricted values of the load. One set of conditions gives uniqueness up to the first branch point.  相似文献   

9.
This paper presents a new application of a theoretical and computational method of smooth boundary integration which belongs to the methods of boundary integral equations. Smooth integration is not a method of approximation. In its final analytical form, a smooth-kernel integral equation is computerized easily and accurately.

Smooth integration is associated with a “pressure-vorticity” formulation which covers linear problems in elasticity and fluid mechanics. The solution presented herein is essentially the same as that reported in an earlier paper for regular elasticity. The constraint of incompressibility does not cause difficulties in the pressure-vorticity formulation.

The linear fluid mechanics problem formulated and solved in this paper covers Stokes' problem of a slow viscous flow, and has a wider interpretation. The translational inertia forces are incorporated in the linear problem, as in Euler's dynamic theory of inviscid flow. The centrifugal inertia forces are left for the non-linear problem. The linear problem is perceived as a step in solution of the non-linear problems.  相似文献   


10.
The present work deals with the formulation of the boundary integral equations for the solution of equations under linear theory of generalized thermoelastic diffusion in a three-dimensional Euclidean space. A mixed initial-boundary value problem is considered in the present context and the fundamental solutions of the corresponding coupled differential equations are obtained in the Laplace transform domain by employing the treatment of scalar and vector potential theory. A reciprocal relation of Betti type is established. Then we formulate the boundary integral equations for generalized thermoelastic diffusion on the basis of these fundamental solutions and the reciprocal relation.  相似文献   

11.
In this article, a variational formulation for the transmission problem of the fluid–bone interaction is formulated. The formulation is based on a modified Biot system of equations for the cancellous bone together with a boundary integral equation formulation of the pressure in the water. Existence and uniqueness for the weak solution of the interaction problem are established in appropriate Sobolev spaces.  相似文献   

12.
Wave propagation in porous media is an important topic, e.g. in geomechanics or the oil-industry. We formulate a linear system of coupled partial differential equations based on Biot's theory with the solid displacements and the pore pressure as the primary unknowns. To solve this system of coupled partial differential equations in a semi-infinite homogeneous domain the BEM (Boundary element method) is especially suitable. Starting from a representation formula a system of two boundary integral equations is derived. These boundary integral equations are used to solve related boundary value problems via a direct approach. Coercivity of the resulting bilinear form is shown, from which unique solvability of the variational formulation follows from injectivity. Using these results we derive the unique solvability of the related boundary integral equations. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper the far-field equations in linear elasticity for scattering from disjoint rigid bodies and cavities are considered. The direct scattering problem is formulated in differential and integral form. The boundary integral equations are constructed using a combination of single- and double-layer potentials. Using a Fredholm type theory it is proved that these boundary integral equations are uniquely solvable. Assuming that the incident field is produced by a superposition of plane incident waves in all directions of propagation and polarization it is established that the scattered field is also expressed as the superposition of the corresponding scattered fields. A pair of integral equations of the first kind which hold independently of the boundary conditions are constructed for the far-field region. The properties of the Herglotz functions are used to derive solvability conditions for the far-field equations. It is also proved that the far-field operators, in terms of which we can express the far-field equations, are injective and have dense range. An analytical example for spheres illuminates the theoretical results.  相似文献   

14.
In this paper we prove the existence of strong solutions for the stationary Bénard-Marangoni problem in a finite domain flat on the top, bifurcating from the basic heat conductive state. The Bénard-Marangoni problem is a physical phenomenon of thermal convection in which the effects of buoyancy and surface tension are taken into account. This problem is modelled with a system of partial differential equations of the type Navier-Stokes and heat equation. The boundary conditions include crossed boundary conditions involving tangential derivatives of the temperature and normal derivatives of the velocity field. To define tangential derivatives at the boundary, intended in the trace sense, it is necessary order two derivatives in the interior of the domain and thus the boundary term contains as high derivatives as the interior term. We overcome this difficulty by considering the weak formulation, and transforming the boundary integral into an equivalent integral defined in the whole domain. This allows us to reformulate the weak problem with a temperature having only order one weak derivatives. Concerning regularity results, we obtain strong solutions for the stationary Bénard-Marangoni problem.  相似文献   

15.
Summary In this paper the convergence of finite difference approximations for the general eigenvalue and boundary value problem of ordinary differential equations is proved under the condition of consistency and stability. The eigenvalues are shown to converge preserving multiplicity. Estimates are given for the rate of convergence of difference quotients and eigenvalues.  相似文献   

16.
Summary. We consider an indirect boundary integral equation formulation for the mixed Dirichlet-Neumann boundary value problem for the Laplace equation on a plane domain with a polygonal boundary. The resulting system of integral equations is solved by a collocation method which uses a mesh grading transformation and a cosine approximating space. The mesh grading transformation method yields fast convergence of the collocation solution by smoothing the singularities of the exact solution. A complete stability and solvability analysis of the transformed integral equations is given by use of a Mellin transform technique, in a setting in which each arc of the polygon has associated with it a periodic Sobolev space. Received April 15, 1995 / Revised version received April 10, 1996  相似文献   

17.
The existence and uniqueness are established for the solution of the equation of transfer of polarized light in a homogeneous atmosphere of finite optical thickness, assuming reflection by the planetary surface. A general Lp-space formulation is adopted. The boundary value problem is first written as a vector-valued integral equation. Using monotonicity properties of the spectral radii of the integral operators involved as well as recent half-range completeness results for kinetic equations with reflective boundary conditions, the present results follow as a corollary.  相似文献   

18.
Using additional unknown functions and additional boundary conditions in the integral method of heat balance, we obtain approximate analytic solutions to the non-stationary thermal conductivity problem for an infinite solid cylinder that allow to estimate the temperature state practically in the whole time range of the non-stationary process. The thermal conducting process is divided into two stages with respect to time. The initial problem for the partial differential equation is represented in the form of two problems, in which the integration is performed over ordinary differential equations with respect to corresponding additional unknown functions. This method allows to simplify substantially the solving process of the initial problem by reducing it to the sequential solution of two problems, in each of them additional boundary conditions are used.  相似文献   

19.
This paper presents a fourth-order kernel-free boundary integral method for the time-dependent, incompressible Stokes and Navier-Stokes equations defined on irregular bounded domains. By the stream function-vorticity formulation, the incompressible flow equations are interpreted as vorticity evolution equations. Time discretization methods for the evolution equations lead to a modified Helmholtz equation for the vorticity, or alternatively, a modified biharmonic equation for the stream function with two clamped boundary conditions. The resulting fourth-order elliptic boundary value problem is solved by a fourth-order kernel-free boundary integral method, with which integrals in the reformulated boundary integral equation are evaluated by solving corresponding equivalent interface problems, regardless of the exact expression of the involved Green's function. To solve the unsteady Stokes equations, a four-stage composite backward differential formula of the same order accuracy is employed for time integration. For the Navier-Stokes equations, a three-stage third-order semi-implicit Runge-Kutta method is utilized to guarantee the global numerical solution has at least third-order convergence rate. Numerical results for the unsteady Stokes equations and the Navier-Stokes equations are presented to validate efficiency and accuracy of the proposed method.  相似文献   

20.
51.Introducti0nSince198O)stheoriesandapplicationsofboundaryelementmethods(BEM)orboundaryintegralmethods(BIM)havemadegreatsuccessesfortheparaboliclnit1alboundaryvalueproblems(seeL1-12j),andtheapproachhasbeenappliedtonumericalsolutionsofinitialboundaryva1ueproblemssuccessfully(seeL1-5j'L8j).Thepropertiesofboundaryelementoperatorshavebeenstudiedbyboundaryintegralmethodsbymanyauthors(see.[4j,L6J'[7j'L12J).Theseresultsprovideabasisforconvergencesanderrorestimatesfornumericalapproximationofbou…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号