首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the title compound was originally reported from film data (Brice et al., Inorg Chem 9:362, 1970) and comprises a triangle of cobalt atoms capped by an ethylidyne substituent to form an approximately tetrahedral cluster unit. The triphenylphosphine ligand lies in an equatorial position with respect to the plane of the cobalt triangle. Two carbonyl groups, one axial the other equatorial, complete the coordination sphere of the cobalt atom bound to phosphorus. The other two cobalt atoms each carry two equatorial and one axial carbonyl ligand. The Co–Co bond cis to the phosphine substituent is significantly longer than the other two Co–Co distances. The crystal structure is stabilised by C—H···π interactions and C—H···O hydrogen bonds. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Summary Complexes of cobalt(II), cobalt(III) and rhodium(III) with TCEC and TAPC have been synthesised. TCEC with cobalt(II) gave [Co(TCEC)Br]Br and [Co(TCEC)Cl]Cl, five coordinate high spin square pyramid complexes, but the corresponding cobalt(III) complex could not be characterised. Rhodium(III) gave a six coordinate [Rh(TCEC)Cl2]Cl complex, in which the two coordinated chlorides have acis-geometry and the four pendant arms lie on one side of the N4 plane with none of the —CN groups coordinated TAPC on the other hand gives the cobalt(III) complex, [Co(TAPC)Br]Br2, in which one of the amino groups of the four pendant arms is coordinated to cobalt. Rhodium(III) with TAPC gave [Rh(TAPC)Cl]Cl2 in which one axial site is occupied by the amino group of one of the pendant arms and the other by Cl.  相似文献   

3.
Use of a hydroxyl-functionalized open chain tetramine in a template reaction based on its Cu(II) complex leads, after reduction, to a new tetraaza macrocycle with both amino and hydroxyl substituents. The macrocycle is formed predominantly as its trans (anti) isomer, though the cis form is detectable and both have been structurally characterized in the form of their metal complexes. Although both the Cu(II) and the Co(III) complexes of the tetramine precursor ligand have the hydroxyl group in an axial position of a chair six-membered chelate ring, the trans macrocycle forms Co(III) complexes with this substituent in both equatorial and axial positions.  相似文献   

4.
贾翔宇  刘恒  张学全 《应用化学》2014,31(2):147-152
合成和表征了一系列以[NN]双齿喹啉醛亚胺为配体的二氯化钴配合物(1a~6a)。 以X射线单晶衍射技术分析了配合物2a、3a和4a的分子结构。 配合物2a和3a以单核四配位(2个氮原子和2个氯原子)的形式结晶,而配合物4a由于取代基空间位阻小,则以双核的形式结晶。 在倍半乙基氯化铝(EASC)的活化下,该催化体系引发丁二烯单体聚合,得到顺式-1,4结构含量高达98%的聚丁二烯。 催化剂催化活性随配体上取代基吸电子能力的增加而提高,但随取代基空间位阻的增加而降低。 所合成的聚丁二烯具有高相对分子质量(Mn约为2.0×105)和窄的相对分子质量分布(Mw/Mn<2.7)。  相似文献   

5.
Procedures for the ligand-exchange chromatography of amino acids on copper-, cobalt-and zinc-Chelex 100 have been examined. Ligand exchange on the copper complex affords a simple and rapid method for the removal of amino acids (except for aspartic and glutamic acids) from dilute solutions. The influence of the pH on the binding of amino acids to the metal complex was also studied. The bound amino acids could be eluted with ammonium hydroxide which also causes a slight metal leakage. Chromatography on cobalt- and zinc-Chelex 100 showed that only the basic amino acids were quantitatively attached to these complexes at pH 8.3-9.5, whereas the others were predominantly EXCLUDED. This procedure can be used for the selective concentration and removal of basic amino acids in the presence of other amino acids.  相似文献   

6.
Summary The influence of pH and ligand structure on the reaction of cobalt(II) complexes with various dipeptides and molecular oxygen was examined. The minimum pH value required for the formation of dioxygen adducts was found to be about 6.5. This value should be related to amidic deprotonation of dipeptides, which seems to occur in the examined systems at particularly low values. The location and steric hindrance of the side chains of the dipeptides have a strong influence on the reaction rate. The presence of a substituent group on the N-terminal amino acid promotes oxygen coordination, while, when the substituent group is on the C-terminal residual, a decrease of reaction rate is observed.A stabilizing effect of the aromatic ring on the dioxygen adducts is found only when the substituent is in the C-terminal position, and seems to be independent of the presence of additional coordinating groups.Some information regarding the mechanism of the irreversible decomposition of the cobalt(II) complexes has been obtained by studying the effect of pH and ligand structure on the reaction rate.Work supported by National Research Council of Italy.  相似文献   

7.
The novel water-soluble polymer–cobalt(III) complex samples, cis-[Co(phen)2(BPEI)Cl]Cl2 · 4H2O (phen = 1,10-phenanthroline, BPEI = branched polyethyleneimine), with different amounts of cobalt complex content in the polymer chain, were prepared by ligand substitution method in water–ethanol medium and characterized by Infra-red, UV–Vis, 1H NMR spectral and elemental analysis methods. The interaction of these polymer–cobalt(III)-phenanthroline complex samples with calf thymus DNA has been explored using electronic absorption spectroscopy, emission spectroscopy and gel electrophoresis techniques. The presence of multiple small size molecular binding sites, namely, the cobalt(III)–phenanthroline complex moieties, and free amino groups in a single big sized polymer molecule enhanced both the electrostatic and/or van der Waals interaction and partial intercalative bindings with calf thymus DNA. The antitumor activity of a sample of polymer–cobalt(III) complex was determined using HEp-2 cell line and different cell death indicator stains and MTT assay. Many of the cultured HEp-2 cells treated with this complex suffered loss of viability and death mostly through apoptosis as evidenced by the nuclear and cytoplasmic morphology.  相似文献   

8.
Treatment of 1-[axial]-(trimethylsilylethynyl)cyclohexan-1-ol with dicobalt octacarbonyl results in a conformational ring flip such that the bulky dicobalt-alkyne cluster moiety now occupies the favored equatorial site. However, when a 4-tert-butyl substituent is present, the coordinated alkynyl group retains its original axial or equatorial position. Complexation of trans-[diaxial]-1,4-bis(triphenylsilylethynyl)cyclohexane-1,4-diol brings about a chair-to-chair conformational inversion such that both cluster fragments now occupy equatorial sites. In contrast, cis-1,4-bis(triphenylsilylethynyl)cyclohexane-1,4-diol reacts with Co(2)(CO)(8) to yield the twist-boat conformer in which the two axial hydroxy substituents exhibit intra-molecular hydrogen bonding. Likewise, the corresponding reaction of cis-1,4-bis(trimethylsilylethynyl)cyclohexane-1,4-diol with Co(2)(CO)(8) leads to a twist-boat, but in this case, the molecules are linked through inter-molecular hydrogen bonds. Eight of these cobalt clusters have been characterized by X-ray crystallography, and the potential use of twist-boats in synthesis is discussed.  相似文献   

9.
This paper presents a systematic investigation on effects of the nature of the organic axial ligand on the primary electrochemical oxidation steps of organoaquobis(dimethylglyoximato)cobalt(III). Evidence is presented to support a one electron reversible process, yielding a cobalt(III) compound attached to the organic radical. Studies of p-substituted benzyl and phenyl derivatives support further the proposed process. The following step is a pseudo-first order irreversible dissociation of the oxidized species, yielding the trans-Co(DH)2(H2O)+ and the organic radical that can be further oxidized at the electrode. Linear free energy correlations obtained between E1/2 and Taft or Hammett parameters, depending on the nature of the organic substituent in axial position, strongly favor that Co-alkyl(aryl) bonding electrons are involved in the electron transfer.  相似文献   

10.
The interaction of chitosan with copper(II) and cobalt(II) tetrasulfophthalocyanines is studied by spectral methods. The main parameters of binding of chitosan to anionic metal phthalocyanines are determined by Scatchard analysis. It is found that the formation of the polymer complex is considerably contributed by donor?acceptor interactions between the coordinately unsaturated metal phthalocyanine and chitosan amino groups. Сhitosan reacts with a monomeric cobalt(II) tetrasulfophthalocyanine, whereas copper(II) tetrasulfophthalocyanine in its complex with chitosan remains in the dimeric state. The reaction centers responsible for the Cu(SO3H)4Pc)2–chitosan and Co(SO3H)4Pc–chitosan complexes are revealed by means of IR spectroscopy.  相似文献   

11.
The transesterification of a simple RNA model, 2-hydroxypropyl p-nitrophenyl phosphate (2, HpNPP) promoted by seven dinuclear Zn(II) catalysts (3,4,5,6,7,8,9:Zn(II)2:(-OCH3)) based on the bis[bis(2-substituted-pyridinyl-6-methyl)]amine ligand system was investigated in methanol under sspH-controlled conditions at 25.0 ± 0.1 °C. The two metal complexing ligands were joined together via the amino N connected to a m-xylyl linker (3, 4, 5, 6, 7) where the 2-pyridinyl substituent = H, CH3, (CH)4, NH2, and NH(C═O)CH3, respectively, and a propyl linker (8, 9) where the ring substituent = H and CH3. All of the dinuclear complexes except 8:Zn(II)2 exhibit saturation kinetics for the kobs versus [catalyst] plots from which one can determine catalyst:substrate binding constants (KM), the catalytic rate constants for their decomposition (kcat), and the second order catalytic rate constants (k2cat = kcat/KM). In the case of 8:Zn(II)2, the plots of kobs versus [catalyst] as a function of sspH are linear, and the catalytic rate constants (k2cat) are defined as the gradients of the plots. Analysis of all of the data at the sspH optimum for each reaction indicates that the presence of the amino and acetamido H-bonding groups and the CH3 group provides similar increases of the kcat terms of 25?50 times that exhibited by the parent complex 3:Zn(II)2. However, in terms of substrate catalyst binding (KM), there is no clear trend that H-bonding groups or the CH3 group provides stronger binding than the parent complex. In terms of the overall second order catalytic rate constant, the CH3, amino, and NH(C═O)CH3 groups provide 20, 10, and 68 times the k2cat observed for the parent complex. In the case of 9:Zn(II)2, the presence of the methyl groups provides a 1000-fold increase in activity (judged by k2cat) over the parent complex 8:Zn(II)2. The results are interpreted to indicate that H-bonding effects may be important for catalysis and less so for substrate binding, but the steric effect and impact on the local polarity provided by a methyl substituent is just as effective and in fact may form part of the acceleratory effect attributed to H-bonding in related systems.  相似文献   

12.
本文合成了一个二价钴配合物[CoL25(NCS)2],(配体L5=4-对溴苯基-3,5-二(2-吡啶基)-1,2,4-三氮唑)。其结构由单晶X衍射结构分析,红外和电喷雾离子质谱表征。该配合物晶体属于三斜晶系,空间群为P1,钴原子和2个三芳基三氮唑配体的4个氮原子(平面)和2个硫氰根的氮原子(轴向)配位形成扭曲的八面体构型。磁性测定表明在1.8~300 K的温度范围内该配合物处于高自旋态。  相似文献   

13.
A pseudotetrahedral cobalt(II) complex with a positive axial zero-field splitting parameter of D = 12.7 cm(-1), as determined by high-field EPR spectroscopy, is shown to exhibit slow magnetic relaxation under an applied dc field.  相似文献   

14.
The complex formation reaction of modified styrene–butadiene–styrene block copolymer (SBS-g-VP and ESBS) with cobalt Schiff base (CoS) in chloroform solution is studied. The coordination number and formation constant are determined by the Miller method. The polymeric complexed membranes (SBS-g-VP–CoS and ESBS–CoS and ESBS–CoS) are made by solution casting method. The kinetics of oxygen binding to polymeric complexed membranes (SBS-g-VP–CoS and ESBS–CoS) is studied and the equilibrium, association, and dissociation constants are determined. The effects of polymeric axial ligand and of the equatorial chelate group are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Co-O and O-O bond stretching frequencies have been determined by oxygen isotopic substitution in a series of cobalt(III)—salen complexes. These all are of the binuclear type [Co(salen)L]2O2, with L being a basic ligand occupying an axial coordination position. The nature of the oxygen binding and the influence of the axial ligands are discussed.  相似文献   

16.
The assembly reaction arising from hydrogen bonding between a chiral C3 symmetric cobalt(III) complex and a tripod-ligand involving three imidazolate groups [tris[2-(((2-methylimidazolato-4-yl)methylidene)amino)ethyl]amine]cobalt(III) and either hydroquinone or resorcinol gave the 1:3 adducts, with 3D extended structures showing the template effect of the complex.  相似文献   

17.
The binding free energy of complex [Co(C(2)O(4))(3)](3-) to three peptides H-Lys-Gly-Lys-Gly-Lys-Gly-Lys-NH(2) (P-1), H-(Lys-Gly-Lys-Gly-Lys-Gly-Lys)(2)-NH(2) (P-2), H-(Lys-Gly-Lys-Gly-Lys-Gly-Lys)(3)-NH(2) (P-3) and to the monomers (amino acids) forming the peptides has been obtained using the kinetics of the electron-transfer reaction between [Ru(NH(3))(5)py](2+) and [Co(C(2)O(4))(3)](3-) as the probe. The polymerization of the monomers increases the negative free energy of binding and changes its character, noncooperative for the monomers and anticooperative for the peptides. This increase in the negative free energy represents a driving force for the polymerization process. The magnitude of the gain in negative free energy, as a consequence of the anticooperative character of the binding of the cobalt complex to the peptide, depends on the ratio of [complex]/[monomers].  相似文献   

18.
Summary: A membrane of a cobalt tetraazaporphyrin polymer complex was prepared with a nanometer thickness and used as an oxygen‐facilitated transport membrane. Rapid and reversible oxygen binding to the cobalt tetraazaporphyrin complex with a polymeric imidazole ligand was observed at low temperature. Oxygen transport through the membrane was facilitated and a high (oxygen/nitrogen) permselectivity of 28 was obtained.

Oxygen‐facilitated transport through a cobalt tetraazaporphyrin complex‐polymer membrane of nanometer thickness.  相似文献   


19.
Cobalt(II) complexes with tetradentate macrocyclic cyclidene ligands are known to coordinate one additional axial base molecule, leaving the sixth vacant coordination site at the metal ion available for small ligand (e.g., O2) binding. Molecular mechanics and molecular dynamics simulations provide a microscopic view of 1-methylimidazole (MeIm) binding within the cavities of several lacunar (bridged) and saddle-shaped (unbridged) cyclidenes and uncover the roles of the bridges and the walls of the clefts in steric protection of the cobalt(II) coordination site. Short bridges (C3 and C6) prevent inside-the-cavity MeIm binding because of severe ligand distortions leading to high-energy penalties (58 and 25 kcal/mol, respectively), while long bridges (C8 and C12) flip away from the MeIm binding site, allowing for penalty-free MeIm inclusion. In the unbridged saddle-shaped complex, there is no energy difference between inside- and outside-the-cavity MeIm binding. The preferential existence of the coordinatively unsaturated, five-coordinate species Co(unbrCyc)(MeIm)2+ should therefore be explained by electronic, rather than steric, factors. Molecular dynamics and free energy simulations reveal the presence of a weak (ca. 4 kcal/mol in the gas phase and ca. 2 kcal/mol in methanol solution) noncovalent MeIm binding site at the entrance of the cleft of cobalt(II) unbridged cyclidene, at a distance of about 4 A from the metal ion. The macrocycle geometry remains undistorted at such large Co-N(MeIm) separations, while the cavity opens up by 0.9 A upon covalent MeIm binding (Co-N(MeIm) distance of 2 A). An increase in macrocycle strain energy upon MeIm inclusion is compensated by favorable nonbonded interactions between the incoming base and the walls of the unbridged cyclidene.  相似文献   

20.
The quenching of singlet oxygen (1deltag) by cobalt(III)-bis-1,2-benzosemiquinone-diiminato complexes (general structure LCo(111)(BQDI)2ClO4) has been studied in different solvents by measuring the singlet oxygen phosphorescence decay in time-resolved experiments. The axial ligand (Ph3As, Ph3Sb, N-methyl-imidazole, pyrrolidine) has practically no influence on the quenching; however, the chlorinated benzosemiquinone-diiminato complex has a markedly lower quenching rate constant. The solvent effects can be fully explained by the difference in viscosity, which supports the assumption that the quenching is diffusion controlled. The reactive radius of the encounter pair has been estimated to be 0.3 nm, shorter than the radius of the complex itself, which points to the fact that singlet oxygen must approach the central cobalt atom at the (partially) open axial position. The significance of these results regarding the quenching of singlet oxygen by vitamin B12 derivatives is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号