首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H(2)L(1)) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H(2)L(2)) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, (1)H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes.  相似文献   

2.
A new family of copper(I) complexes with "glycoligands" containing a central saccharide scaffold, with 2-picolyl ether groups or 2-picolylamine or N-imidazolylamine groups, has been prepared and characterized. For this purpose, the following tetradentate ligands have been synthesized: methyl 2,3-di-O-(2-picolyl)-alpha-D-lyxofuranoside (L1), 1,5-anhydro-2-deoxy-3,4-di-O-(2-picolyl)-d-galactitol (L2), 5-(amino-N-(2-salicyl))-5-deoxy-1,2-O-isopropylidene-3-O-(2-picolyl)-alpha-D-xylofuranose (L3), and 5-(amino-N-(2-salicyl))-5-deoxy-1,2-O-isopropylidene-3-O-(methylimidazol-2-yl)-alpha-D-xylofuranose (L4). The ligands and the complexes were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopies, ESI mass spectrometry, and cyclic voltammetry. Collaterally with the experimental work, HF-DFT(B3LYP/6-31G*) computations were performed to obtain additional structural information. The Cu(I) complexes are found to be pentacoordinated. The redox properties and the O2-reactivity of the Cu(I)Ln complexes have been studied. Reactions of Cu(I) complexes with dioxygen in ethanol yield stable Cu(II) complexes as confirmed by UV-visible spectrophotometry and EPR spectroscopy.  相似文献   

3.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

4.
Three malonato-bridged copper(II) complexes of the formulas [[Cu(H2O)3][Cu(C3H2O4)2(H2O)]]n (1), [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]] [Cu(C3H2O4)2(H2O)2][[Cu(H2O)4][Cu(C3H2O4)2(H2O)2]] (2), and [Cu(H2O)4][Cu(C3H2O4)2(H2O)2] (3) (C3H2O4 = malonate dianion) have been prepared, and the structures of the two former have been solved by X-ray diffraction methods. The structure of compound 3 was already known. Complex 1 crystallizes in the orthorhombic space group Pcab, Z = 8, with unit cell parameters of a = 10.339(1) A, b = 13.222(2) A, and c = 17.394(4) A. Complex 2 crystallizes in the monoclinic space group P2/c, Z = 4, with unit cell parameters of a = 21.100(4) A, b = 21.088(4) A, c = 14.007(2) A, and beta = 115.93(2) degrees. Complex 1 is a chain compound with a regular alternation of aquabis(malonato)copper(II) and triaquacopper(II) units developing along the z axis. The aquabis(malonato)copper(II) unit acts as a bridging ligand through two slightly different trans-carboxylato groups exhibiting an anti-syn coordination mode. The four carboxylate oxygens, in the basal plane, and the one water molecule, in the apical position, describe a distorted square pyramid around Cu1, whereas the same metal surroundings are observed around Cu2 but with three water molecules and one carboxylate oxygen building the equatorial plane and a carboxylate oxygen from another malonato filling the apical site. Complex 2 is made up of discrete mono-, di-, and trinuclear copper(II) complexes of the formulas [Cu(C3H2O4)2(H2O)2]2-, [[Cu(H2O)4] [Cu(C3H2O4)2(H2O)2]], and [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]]2+, respectively, which coexist in a single crystal. The copper environment in the mononuclear unit is that of an elongated octahedron with four carboxylate oxygens building the equatorial plane and two water molecules assuming the axial positions. The neutral dinuclear unit contains two types of copper atoms, one that is six-coordinated, as in the mononuclear entity, and another that is distorted square pyramidal with four water molecules building the basal plane and a carboxylate oxygen in the apical position. The overall structure of this dinuclear entity is nearly identical to that of compound 3. Finally, the cationic trimer consists of an aquabis(malonato)copper(II) complex that acts as a bismonodentate ligand through two cis-carboxylato groups (anti-syn coordination mode) toward two tetraaqua-copper(II) terminal units. The environment of the copper atoms is distorted square pyramidal with four carboxylate oxygens (four water molecules) building the basal plane of the central (terminal) copper atom and a water molecule (a carboxylate oxygen) filling the axial position. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-290 K. Overall, ferromagnetic behavior is observed in the three cases: two weak, alternating intrachain ferromagnetic interactions (J = 3.0 cm-1 and alpha J = 1.9 cm-1 with H = -J sigma i[S2i.S2i-1 + alpha S2i.S2i+1]) occur in 1, whereas the magnetic behavior of 2 is the sum of a magnetically isolated spin doublet and ferromagnetically coupled di- (J3 = 1.8 cm-1 from the magnetic study of the model complex 3) and trinuclear (J = 1.2 cm-1 with H = -J (S1.S2 + S1.S3) copper(II) units. The exchange pathway that accounts for the ferromagnetic coupling, through an anti-syn carboxylato bridge, is discussed in the light of the available magneto-structural data.  相似文献   

5.
Coordination complexes of the ligand H3L [1,3-bis(3-oxo-3-phenylpropionyl)-2-hydroxy-5-methylbenzene] with Cu(II) are reported. Clusters showing various nuclearities or modes of supramolecular organization have been prepared by slightly changing the reaction conditions and have been crystallographically characterized. The reaction of H3L with one equivalent of Cu(OAc)2 in DMF yields the dinuclear complex [Cu2(HL)2(dmf)2] (1). Reaction in MeOH of H3L with an increased amount of metal, in the form of Cu(NO3)2, and excess strong base (nBu4NOH) affords the cluster [Cu8(L)2(OMe)8(NO3)2] (2). Complex 2 is a dimer of two linear [Cu4] arrays bridged by methoxide ligands, where the polynucleating ligand is fully deprotonated. The [Cu4]2 clusters are linked to each other by NO3- bridges to form one-dimensional coordination polymers. The link between [Cu8] units and their relative spatial positioning can be modified by changing the anion of the Cu(II) salt, as demonstrated by the synthesis of the cluster polymers [Cu8(L)2(OMe)8Cl2] (3) and [Cu8(L)(OMe)7.86Br2.14] (4), where only NO3- has been replaced by Cl- or Br-, respectively. Similarly, when ClO4- is used, compound [Cu8(L)2(OMe)8(ClO4)2(MeOH)4] (5) can be isolated. It contains independent [Cu8] units. A slight change in the stoichiometry of the reaction leading to 2 affords the related complex catena-[Cu4(L)(OMe)3(NO3)2(H2O)0.36] (6). This polymer contains essentially the same [Cu4] moiety as 2, albeit organized in a completely different arrangement. Each [Cu4] unit in 6 is linked by OMe- ligands to two such equivalent groups to form an infinite chain. Magnetic susceptibility measurements reveal weak antiferromagnetic exchange between Cu(II) centers in 1 (J = -0.73 cm(-1)) and strong antiferromagnetic coupling within [Cu4] chains in 2, 5, and 6 (most negative J values of -113.8 and -177.3 cm(-1) for 2 and 6, respectively).  相似文献   

6.
Two new inorganic-organic polymeric hybrids [Sn(pcp)] and [Cu(pcp)], pcp=CH2(PhPO2)2(2-), have been synthesized and structurally characterized. The tin derivative has been obtained by reaction of the p,p'-diphenylmethylenediphosphinic acid (H2pcp) in water with SnCl2.2H2O, while the copper derivative has been synthesized through a hydrothermal reaction from the same H2pcp acid and Cu(O2CMe)2.H2O. The structures of these compounds have been solved "ab initio" by X-ray powder diffraction (XRPD) data. [Sn(pcp)] has a ladder-like polymeric structure, with tin(II) centers bridged by diphenylmethylenediphosphinate ligands, and alternating six- and eight-membered rings. The hemilectic coordination around the metal shows the tin(II) lone pair to be operative, resulting in significant interaction mainly with a C-C bond of one phenyl ring. The [Cu(pcp)] complex displays a polymeric columnar structure formed by two intersecting sinusoidal ribbons of copper(II) ions bridged by the bifunctional phosphinate ligands. The intersections of the ribbons are made of dimeric units of pentacoordinated copper ions. Crystal data for [Sn(pcp)]: monoclinic, space group P2(1)/c, a=11.2851(1), b=15.4495(6), c=8.6830(1) A, beta=107.546(1) degrees, V=1443.44(9) A, Z=4. Crystal data for [Cu(pcp)]: triclinic, space group P, a=10.7126(4), b=13.0719(4), c=4.9272(3) A, alpha=92.067(5), beta=95.902(7), gamma=87.847(4) degrees, V=685.47(7), Z=2. The tin compound has been characterized by 119Sn MAS NMR (magic-angle spinning NMR), revealing asymmetry in the valence electron cloud about tin. Low-temperature magnetic measurements of the copper compound have indicated the presence of weak antiferromagnetic interactions below 50 K.  相似文献   

7.
Dicopper(II) complexes of two new 3,5-disubstituted-pyrazole-based ligands, bis(quadridentate) macrocyclic ligand (L1)(2-) and bis(terdentate) acyclic ligand (L2)(-), were synthesised by Schiff base condensation of 3,5-diformylpyrazole and either one equivalent of 1,3-diaminopropane or two equivalents of 2-(2-aminoethyl)pyridine in the presence of one or two equivalents of copper(II) ions, respectively. Copper(II) acetate monohydrate was employed in the synthesis of [Cu(2)(L1)(OAc)(2)], [Cu(2)(L2)(H(2)O)(2)(OAc)(3)] and [Cu(II)(2)(L1)(NCS)(2)]; in the last of these one equivalent of NaNCS per copper(II) ion was also added. The fourth complex, [Cu(2)(L2)(NCS)(2)(DMF)]BF(4), was prepared using copper(II) tetrafluoroborate hexahydrate, along with two equivalents of NaOH and six of NaSCN. All four of these dimetallic complexes have been characterised by single crystal X-ray diffraction: the two macrocyclic complexes are the first such Schiff base complexes to be so characterised. A feature common to all four of the structures is bridging of the two copper(II) centres by the pyrazolate moiety/moieties. The structure determinations show that the coordination mode of the acetate groups in both [Cu(2)(L1)(OAc)(2)].2MeOH.H(2)O and [Cu(2)(L2)(H(2)O)(2)(OAc)(3)] is unidentate as had been tentatively predicted by analysis of the infrared spectra (DeltaOCO of 199 and 208 cm(-1), respectively). The magnetochemical studies of the macrocyclic complexes, over the temperature range 4-300 K, revealed strong antiferromagnetic coupling with J = -169 and -213 cm(-1) for [Cu(2)(L1)(OAc)(2)].2H(2)O and [Cu(II)(2)(L1)(NCS)(2)].DMF respectively. The J values have been discussed in relation to a published correlation involving the CuN(pyrazolate)N(pyrazolate) angles.  相似文献   

8.
A number of indolo[3,2-c]quinolines were synthesized and modified at the lactam unit to provide a peripheral binding site able to accommodate metal ions. Potentially tridentate ligands HL(1a)-HL(4a) and HL(1b)-HL(4b) were reacted with copper(II) chloride in isopropanol/methanol to give novel five-coordinate copper(II) complexes [Cu(HL(1a-4a))Cl(2)] and [Cu(HL(1b-4b))Cl(2)]. In addition, a new complex [Cu(HL(5b))Cl(2)] and two previously reported compounds [Cu(HL(6a))Cl(2)] and [Cu(HL(6b))Cl(2)] with modified paullone ligands HL(5b), HL(6a), and HL(6b), which can be regarded as close analogues of indoloquinolines HL(1b), HL(4a), and HL(4b), in which the pyridine ring was formally substituted by a seven-membered azepine ring, were synthesized for comparison. The new ligands and copper(II) complexes were characterized by (1)H and (13)C NMR, IR and electronic absorption spectroscopy, ESI mass spectrometry, magnetic susceptibility measurements in solution at 298 K ([Cu(HL(1a))Cl(2)] and [Cu(HL(4b))Cl(2)]), and X-ray crystallography ([Cu(HL(3b))Cl(2)]·3DMF, [Cu(HL(4b))Cl(2)]·2.4DMF, HL(5b) and [Cu(HL(5b))Cl(2)]·0.5CH(3)OH). All complexes were tested for cytotoxicity in the human cancer cell lines CH1 (ovarian carcinoma), A549 (non-small cell lung cancer), and SW480 (colon carcinoma). The compounds are highly cytotoxic, with IC(50) values ranging from nanomolar to very low micromolar concentrations. Substitution of the seven-membered azepine ring in paullones by a pyridine ring resulted in a six- to nine-fold increase of cytotoxicity in SW480 cells. Electron-releasing or electron-withdrawing substituents in position 8 of the indoloquinoline backbone do not exert any effect on cytotoxicity of copper(II) complexes, whereas copper(II) compounds with Schiff bases obtained from 2-acetylpyridine and indoloquinoline hydrazines are 10 to 50 times more cytotoxic than those with ligands prepared from 2-formylpyridine and indoloquinoline hydrazines.  相似文献   

9.
Copper(I) complexes of the ligand cis-1,3,5-tris(cinnamylideneamino)cyclohexane (L) have been prepared from a versatile precursor complex, [Cu(I)(L)NCMe]BF4, which incorporates a labile acetonitrile ligand that can be exchanged to give a range of new Cu(L)X complexes (where X = Cl, Br, NO2, SPh). 1H NMR spectra and X-ray structures of the Cl, Br and NO2 complexes show L coordinated in a symmetric fashion about the copper centre. The complexes have been further characterised using UV/Visible spectroscopy and cyclic voltammetry. CuLCl shows an electrochemically reversible Cu(I/II) redox couple at 0.51 V (vs. Ag/AgCl) while the CuLNO2 complex shows an analogous quasi-reversible wave at 0.41 V (vs. Ag/AgCl).  相似文献   

10.
The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.  相似文献   

11.
Keypour  H.  Sedighi  B.  Asadi  A.  Parish  R. V. 《Transition Metal Chemistry》1997,23(1):7-12
The synthesis and characterisation of the title ligands (MXBDP and PXBDP) are described. The successive protonation constants (log Kn) are: for MXBDP, 10.77, 10.44, 9.82, 8.88, 3.19 and 1.48; for PXBDP, 10.94, 10.58, 9.90, 9.38, 3.37 and 2.27 (n=16). With copper(II), nickel(II) and cobalt(II) both ligands preferentially form binuclear complexes, M2L4+ (L=MXBDP, PXBDP), for which the formation constants [logβ(M2L), M=Cu, Ni, Co] are: for MXBDP, 22.16, 16.20, 11.07; for PXBDP, 25.48, 17.18 and 12.74, respectively. The copper complexes Cu2(MXBDP)Cl4· 4H2O and Cu2(PXBDP)Cl4·2H2O have been isolated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Two mononuclear copper(II) complexes with the unsymmetrical tridentate ligand 2-[((imidazol-2-ylmethylidene)amino)ethyl]pyridine (HL), [Cu(HL)(H2O)](ClO4)2.2H2O (1) and [Cu(HL)Cl2] (2), have been prepared and characterized. The X-ray analysis of 2 revealed that the copper(II) ion assumes a pentacoordinated square pyramidal geometry with an N3Cl2 donor set. When 1 and 2 are treated with an equimolecular amount of potassium hydroxide, the deprotonation of the imidazole moiety promotes a self-assembled process, by coordination of the imidazolate nitrogen atom to a Cu(II) center of an adjacent unit, leading to the polynuclear complexes [[Cu(L)(H2O)](ClO4)]n (3) and [[Cu(L)Cl].2H2O]n (4). Variable-temperature magnetic data are well reproduced for one-dimensional infinite regular chain systems with J = -60.3 cm(-1) and g = 2.02 for 3 and J = -69.5 cm(-1) and g = 2.06, for 4. When 1 is used as a "ligand complex" for [M(hfac)2] (M = Cu(II), Ni(II), Mn(II), Zn(II)) in a basic medium, only the imidazolate-bridged trinuclear complexes [Cu(L)(hfac)M(hfac)2Cu(hfac)(L)] (M = Zn(II), Cu(II)) (5, 6) can be isolated. Nevertheless, the analogous complex containing Mn(II) as the central metal (7) can be prepared from the precursor [Cu(HL)Cl2] (2). All the trinuclear complexes are isostructural. The structures of 5 and 6 have been solved by X-ray crystallographic methods and consist of well-isolated molecules with Ci symmetry, the center of symmetry being located at the central metal. Thus, the copper(II) fragments are in trans positions, leading to a linear conformation. The magnetic susceptibility data (2-300 K), which reveal the occurrence of antiferromagnetic interactions between copper(II) ions and the central metal, were quantitatively analyzed for symmetrical three-spin systems to give the coupling parameters JCuCu = -37.2 and JCuMn = -3.7 cm(-1) with D = +/-0.4 cm(-1) for 6 and 7, respectively. These magnetic behaviors are compared with those for analogous systems and discussed on the basis of a localized-orbital model of exchange interactions.  相似文献   

13.
Cu(II) and Ni(II) complexes of the general type [M(N2O2)] are described. The N2O2 ligands used are [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,3-diamine] (HOMeSalpn) and [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,2-diamine (HOMeSalpr). These complexes have been characterized by IR, UV-vis, CV, TG-DTA and 1H NMR spectroscopy. The electrochemical behavior of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Cu(II)-Cu(I) and Ni(II)-Ni(I) is electrochemically irreversible. The new copper complexes have been applied for the preparation of copper nanoparticles using non-ionic surfactant (Triton X-100) by thermal reduction. The copper nanoparticles with average size of 48nm were formed by thermal reduction of [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,3-diamine]copper(II) in the presence of triphenylphosphine thus releasing the reduced copper and affording the high-purity copper nanoparticles.  相似文献   

14.
The coordination behaviour of a new thiosemicarbazone Schiff-base building block, N-{2-([4-N-ethylthiosemicarbazone]methyl)phenyl}-p-toluenesulfonamide, H2L1 (1), incorporating a bulky tosyl group, towards Mn II, Fe II, Co II, Ni II, Cu II, Zn II, Cd II, Ag I, Sn II, and Pb II has been investigated by means of an electrochemical preparative procedure. Most metal complexes of L1 have the general formula [M(L1)]2.nX (M=Mn, Fe, Co, Ni, Cu, Cd, Pb; n=0-4, X=H2O or CH3CN), as confirmed by the structure of [Pb(L1)]2 (15), in which the lone pair on lead is stereochemically active. This lead(II) complex shows an intense fluorescence emission with a quantum yield of 0.13. In the case of silver, the complex formed was found to possess a stoichiometry of [Ag2(L1)]2.3H2O. During reactions with manganese and copper metals, interesting catalysed processes have been found to take place, with remarkable consequences regarding the ligand skeleton structure. In synthesising the manganese complex, we obtained an unexpected dithiolate thiosemicarbazone tosyl ligand, H2L2, as a side-product, which has been fully characterised, including by X-ray diffraction analysis. In the case of copper, the solid complex has the formula [CuL1]2, but the crystallised product shows the copper atoms coordinated to a new cyclised thiosemicarbazone ligand, H2L3, as in the structures of the complexes [Cu(L3)]2.CH3CN (8) and [Cu(L3)(H2O)]2.CH3CN.H2O (9). The zinc complex [Zn(L1)]4 (12) displays a particular tetranuclear zeolite-type structure capable of hosting small molecules or ions, presumably through hydrogen bonding.  相似文献   

15.
Nickel(II) and copper(II) complexes are synthesized with a novel tetradentate macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetraphenyltricyclo[15,3,1,1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) and characterized by the elemental analysis, magnetic susceptibility measurements, mass, (1)H NMR, IR, electronic and EPR spectral studies. All the complexes are non-electrolytic in nature. Thus, these may be formulated as [M(L)X(2)] [M=Ni(II), Cu(II) and X=Cl(-), NO(3)(-) and (1/2)SO(4)(2-)]. Ni(II) and Cu(II) complexes show magnetic moments corresponding to two and one unpaired electron, respectively. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Ni(II) and tetragonal geometry for Cu(II) complexes.  相似文献   

16.
The copper(II) coordination chemistry of westiellamide (H(3)L(wa)), as well as of three synthetic analogues with an [18]azacrown-6 macrocyclic structure but with three imidazole (H(3)L(1)), oxazole (H(3)L(2)), and thiazole (H(3)L(3)) rings instead of oxazoline, is reported. As in the larger patellamide rings, the N(heterocycle)-N(peptide)-N(heterocycle) binding site is highly preorganized for copper(II) coordination. In contrast to earlier reports, the macrocyclic peptides have been found to form stable mono- and dinuclear copper(II) complexes. The coordination of copper(II) has been monitored by high-resolution electrospray mass spectrometry (ESI-MS), spectrophotometric and polarimetric titrations, and EPR and IR spectroscopies, and the structural assignments have been supported by time-dependent studies (UV/Vis/NIR, ESI-MS, and EPR) of the complexation reaction of copper(II) with H(3)L(1). Density functional theory (DFT) calculations have been used to model the structures of the copper(II) complexes on the basis of their spectroscopic data. The copper(II) ion has a distorted square-pyramidal geometry with one or two coordinated solvent molecules (CH(3)OH) in the mononuclear copper(II) cyclic peptide complexes, but the coordination sphere in [Cu(H(2)L(wa))(OHCH(3))](+) differs from those in the synthetic analogues, [Cu(H(2)L)(OHCH(3))(2)](+) (L = L(1), L(2), L(3)). Dinuclear copper(II) complexes ([Cu(II) (2)(HL)(mu-X)](+); X = OCH(3), OH; L = L(1), L(2), L(3), L(wa)) are observed in the mass spectra. While a dipole-dipole coupled EPR spectrum is observed for the dinuclear copper(II) complex of H(3)L(3), the corresponding complexes with H(3)L (L = L(1), L(2), L(wa)) are EPR-silent. This may be explained in terms of strong antiferromagnetic coupling (H(3)L(1)) and/or a low concentration of the dicopper(II) complexes (H(3)L(wa), H(3)L(2)), in agreement with the mass spectrometric observations.  相似文献   

17.
Two new Schiff base ligands 1 and 2 (where 1 = 4-(2-hydroxybenzilidenamino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate, 2 = 4-(4-(decyloxy)-2-hydroxybenziliden amino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate) and their copper (Cu)(II) complexes have been synthesised and characterised. The derivatives were fully characterised structurally, and their mesomorphic behaviour was investigated by polarised optical microscopyand differential scanning calorimetry. The structure of Cu(II) complex having 1 as ligand (3) was determined by X-ray diffraction. The Schiff base ligands exhibit enantiotropic nematic phases, the Cu(II) complex 4 shows monotropic nematic phase behaviour, while compound 3 does not show mesomorphism.  相似文献   

18.
The interaction between Co(II) and Cu(II) ions with a Py(2)N(4)S(2)-coordinating octadentate macrocyclic ligand (L) to afford dinuclear compounds has been investigated. The complexes were characterized by microanalysis, conductivity measurements, IR spectroscopy and liquid secondary ion mass spectrometry. The crystal structure of the compounds [H(4)L](NO(3))(4), [Cu(2)LCl(2)](NO(3))(2) (5), [Cu(2)L(NO(3))(2)](NO(3))(2) (6), and [Cu(2)L(μ-OH)](ClO(4))(3)·H(2)O (7) was also determined by single-crystal X-ray diffraction. The [H(4)L](4+) cation crystal structure presents two different conformations, planar and step, with intermolecular face-to-face π,π-stacking interactions between the pyridinic rings. Complexes 5 and 6 show the metal ions in a slightly distorted square-pyramidal coordination geometry. In the case of complex 7, the crystal structure presents the two metal ions joined by a μ-hydroxo bridge and the Cu(II) centers in a slightly distorted square plane or a tetragonally distorted octahedral geometry, taking into account weak interactions in axial positions. Electron paramagnetic resonance spectroscopy is in accordance with the dinuclear nature of the complexes, with an octahedral environment for the cobalt(II) compounds and square-pyramidal or tetragonally elongated octahedral geometries for the copper(II) compounds. The magnetic behavior is consistent with the existence of antiferromagnetic interactions between the ions for cobalt(II) and copper(II) complexes, while for the Co(II) ones, this behavior could also be explained by spin-orbit coupling.  相似文献   

19.
Wang FQ  Mu WH  Zheng XJ  Li LC  Fang DC  Jin LP 《Inorganic chemistry》2008,47(12):5225-5233
Four copper(II) complexes [Cu3(PZHD)2(2,2'-bpy)2(H2O)2].3H2O (1), [Cu3(DHPZA)2(2,2'-bpy)2] (2), [Cu(C2O4)phen(H2O)].H2O (3), and [Cu3(PZTC)2(2,2'-bpy)2].2H2O (4) were synthesized by hydrothermal reactions, in which the complexes 1-3 were obtained by the in situ Cu(II)/H3PZTC reactions (PZHD3- = 2-hydroxypyrazine-3,5-dicarboxylate, 2,2'-bpy = 2,2'-bipyridine, DHPZA3- = 2,3-dihydroxypyrazine-5-carboxylate, C2O42- = oxalate, phen = 1,10-phenanthroline, and H3PZTC = pyrazine-2,3,5-tricarboxylic acid). The Cu(II)/H3PZTC hydrothermal reaction with 2,2'-bpy, without addition of NaOH, results in the formation of complex 4. The complexes 1-4 and transformations from H3PZTC to PZHD3-, DHPZA3-, and C2O4(2-) were characterized by single-crystal X-ray diffraction and theoretical calculations. In the complexes 1, 2, and 4, the ligands PZHD3-, DPHZA3-, and PZTC3- all show pentadentate coordination to Cu(II) ion forming three different trinuclear units. The trinuclear units in 1 are assembled by hydrogen-bonding and pi-pi stacking to form a 3D supramolecular network. The trinuclear units in 2 acting as building blocks are connected by the carboxylate oxygen atoms forming a 2D metal-organic framework (MOF) with (4,4) topology. While the trinuclear units in 4 are linked together by the carboxylate oxygen atoms to form a novel 2D MOF containing right- and left-handed helical chains. The theoretical characterization testifies that electron transfer between OH- and Cu2+ and redox of Cu 2+ and Cu+ are the most important processes involved in the in situ copper Cu(II)/H3PZTC reactions, forming complexes of 1-3.  相似文献   

20.
The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号