首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A synthetic strategy for catalytic asymmetric conjugate addition‐protonation and diastereoselective switch between 5H‐oxazol‐4‐ones and 5‐methylene 1,3‐oxazolidine‐2,4‐diones was established. An array of chiral conjugate addition‐protonation products bearing 1,3‐O‐heterotertiary‐O‐heteroquarternary nonadjacent stereocenters were obtained in excellent yields, moderate to good diastereoselectivities, and excellent enantioselectivities (up to 97% yield, 11: 1 dr, and 98% ee). Induction by 2,2’‐biphenol could effectively promote the production of the corresponding diastereoisomers via cycloaddition intermedia.  相似文献   

2.
A palladium‐catalyzed oxygenative cross‐coupling of ynamides and benzyl bromides has been developed. After subsequent hydrogenation, α,α‐disubstituted amide derivatives were obtained in good yields. Migratory insertion of α‐oxo palladium carbene species, generated by intermolecular oxidation, is proposed as the key step in this reaction. The study demonstrates the potential of ynamides to serve as carbene precursors in palladium‐catalyzed C?C bond‐forming cross‐coupling reactions.  相似文献   

3.
The reaction of substituted phenyl isocyanates with 2‐amino‐2‐phenylpropanenitrile and 2‐amino‐2‐(4‐nitrophenyl)propanenitrile has been used to prepare substituted 1‐(1‐cyanoethyl‐1‐phenyl)‐3‐phenylureas. In anhydrous phosphoric acid the first products to be formed from 1‐(1‐cyanoethyl‐1‐phenyl)‐3‐phenylureas are phosphates of 4‐methyl‐4‐phenyl‐2‐phenylimino‐5‐imino‐4,5‐dihydro‐1,3‐oxazoles, which on subsequent hydrolysis give the respective ureidocarboxylic acids. On prolongation of the reaction time, the phosphates of 4‐methyl‐4‐phenyl‐2‐phenylimino‐5‐imino‐4,5‐dihydro‐1,3‐oxazoles rearrange to give phosphates of 5‐methyl‐4‐imino‐3,5‐diphenylimidazolidin‐2‐ones, and these are subsequently hydrolysed to the respective substituted 5‐methyl‐3,5‐diphenylimidazolidin‐2,4‐diones. The ureidocarboxylic acids were also prepared by alkaline hydrolysis of 5‐methyl‐3,5‐diphenylimidazolidin‐2,4‐diones. The 5‐methyl‐3,5‐diphenylimidazolidin‐2,4‐diones and ureidocarboxylic acids were characterised by their 1H and 13C NMR spectra. Structure of the 5‐methyl‐5‐(4‐nitrophenyl)‐3‐phenylimidazolidine‐2,4‐dione was verified by X‐ray diffraction. The alkaline hydrolysis of individual imidazolidine‐2,4‐diones was studies spectrophoto‐metrically in sodium hydroxide solutions at 25 °C. The rate‐limiting step of the base catalysed hydrolysis consists in decomposition of the tetrahedral intermediate. The reaction is faster if electron‐acceptor sub‐stituents are present in the 3‐phenyl group of imidazolidine‐2,4‐dione cycle. The pKa values of individual 5‐methyl‐3,5‐diphenylimidazolidine‐2,4‐diones have been determined kinetically.  相似文献   

4.
A new route for the synthesis of 3,5‐diarylcyclohex‐2‐enones is reported. The 4‐acetyl‐1,3‐diarylhexane‐1,5‐diones were obtained by the addition of pentane‐2,4‐dione to chalcones. The reaction of 4‐acetyl‐1,3‐diarylhexane‐1,5‐diones with NH4Cl/HCl in EtOH under reflux conditions gave the 3,5‐diarylcyclohex‐2‐enones in good yields. All synthesized compounds were characterized by spectroscopic methods (1H‐, 13C‐NMR, and IR), and elemental analyses.  相似文献   

5.
4‐Hydroxy‐1H‐quinolin‐2‐ones ( 1 ) react with thiocyanogen in acetic acid to the corresponding 3‐thiocyanato‐1H,3H‐quinoline‐2,4‐diones ( 2 ) in good yields. In some cases, 3‐bromo‐1H,3H‐quinoline‐2,4‐diones ( 4 ) were isolated as minor reaction products. Compounds 2 are very reactive towards nucleophiles and easily hydrolyze to the corresponding 4‐hydroxy‐1H‐quinoline‐2‐ones ( 1 ).  相似文献   

6.
Cu‐catalyzed direct difluoromethylation of activated alkenes through a difluoromethyl radical addition/cyclization to afford difluorinated oxindoles and quinoline‐2,4‐diones has been developed. This method provides convenient access to a variety of oxindoles and quinoline‐2,4‐diones under mild conditions via a proposed tandem radical cyclization process, while tolerating various functional groups well. Moreover, a facile method to construct diverse difluorinated quinoline‐2,4‐diones by visible‐light photoredox catalysis under mild conditions was presented.  相似文献   

7.
A direct ortho‐Csp2‐H acylmethylation of 2‐aryl‐2,3‐dihydrophthalazine‐1,4‐diones with α‐carbonyl sulfoxonium ylides is achieved through a RuII‐catalyzed C?H bond activation process. The protocol featured high functional group tolerance on the two substrates, including aryl‐, heteroaryl‐, and alkyl‐substituted α‐carbonyl sulfoxonium ylides. Thereafter, 2‐(ortho‐acylmethylaryl)‐2,3‐dihydrophthalazine‐1,4‐diones were used as potential starting materials for the expeditious synthesis of 6‐arylphthalazino[2,3‐a]cinnoline‐8,13‐diones and 5‐acyl‐5,6‐dihydrophthalazino[2,3‐a]cinnoline‐8,13‐diones under Lawesson's reagent and BF3?OEt2 mediated conditions, respectively. Of these, the BF3?OEt2‐mediated cyclization proceeded in DMSO as a solvent and a methylene source via dual C?C and C?N bond formations.  相似文献   

8.
A transition‐metal‐ and oxidant‐free DNP (2,4‐dinitrophenol)‐catalyzed atom‐economical regio‐ and diastereoselective synthesis of monofunctionalized α‐alkynyl‐3‐amino‐2‐oxindole derivatives by C?H bond functionalization of cyclic amines and alkynes with indoline‐2,3‐diones has been developed. This cascade event sequentially involves the reductive amination of indoline‐2,3‐dione by imine formation and cross coupling between C(sp3)?H and C(sp)?H of the cyclic amines and alkynes. This reaction offers an efficient and attractive pathway to different types of α‐alkynyl‐3‐amino‐2‐oxindole derivatives in good yields with a wide tolerance of functional groups. The salient feature of this methodology is that it completely suppresses the homocoupling of alkynes. To the best of our knowledge, this is the first example of a DNP‐catalyzed metal‐free direct C(sp3)?H and C(sp)?H bond functionalization providing biologically active α‐alkynyl‐3‐amino‐2‐oxindole scaffolds.  相似文献   

9.
10.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

11.
3‐Hydroxyquinoline‐2,4‐diones 1 react with isocyanates to give novel 1,2,3,4‐tetrahydro‐2,4‐dioxoquinolin‐3‐yl (alkyl/aryl)carbamates 2 and/or 1,9b‐dihydro‐9b‐hydroxyoxazolo[5,4‐c]quinoline‐2,4(3aH,5H)‐diones 3 . Both of these compounds are converted, by boiling in cyclohexylbenzene solution in the presence of Ph3P or 4‐(dimethylamino)pyridine, to give 3‐(acyloxy)‐1,3‐dihydro‐2H‐indol‐2‐ones 8 . All compounds were characterized by IR, and 1H‐ and 13C‐NMR spectroscopy, as well as by EI mass spectrometry.  相似文献   

12.
The Riemschneider reaction of 3‐thiocyanatoquinoline‐2,4(1H,3H)‐diones with conc. H2SO4 was investigated. Using different reaction conditions, 13 types of reaction products were isolated. Compounds bearing a Me, Et, or Bu group at C(3) afforded mainly [1,3]thiazolo[5,4‐c]quinoline‐2,4‐diones and 1,9b‐dihydro‐9b‐hydroxythiazolo[5,4‐c]quinoline‐2,4‐diones. In the case of the 3‐Bu derivatives of the starting compounds, C‐debutylation was also observed. If a Bn group is present at C(3), rapid C‐debenzylation of the starting thiocyanates occurred, yielding [1,3]oxathiolo[4,5‐c]quinoline‐2,4‐diones, and mixtures of mono‐, di‐, and trisulfides derived from 4‐hydroxy‐3‐sulfanylquinoline‐2‐ones. The reaction mechanism of all of the transformations is discussed. All new compounds were characterized by IR, 1H‐ and 13C‐NMR, and EI and ESI mass spectra, and in some cases, 15N‐NMR spectra were also used to characterize new compounds.  相似文献   

13.
3‐Chloroquinoline‐2,4‐diones do not react with phosphoryl chloride, however, 2,4‐dichloroquinolines and/or 4‐chloroquinolin‐2‐ones are formed in the presence of N,N‐dimethylaniline. Along with these compounds, small quantities of novel dihydrogen phosphates of 4‐hydroxyquinolin‐2‐ones were isolated. We outline a simple procedure that allows for the preparation of these compounds in moderate to good yields. All compounds were characterized by 1H and 13C NMR, IR, EI‐MS, and ESI‐MS spectroscopy, and in select cases by 31P NMR spectroscopy.  相似文献   

14.
The reactions of 5‐benzylidene‐3‐phenylrhodanine ( 2 ; rhodanine=2‐thioxo‐1,3‐thiazolidin‐4‐one) with diazomethane ( 7a ) and phenyldiazomethane ( 7b ) occurred chemoselectively at the exocyclic C?C bond to give the spirocyclopropane derivatives 9 and, in the case of 7a , also the C‐methylated products 8 (Scheme 1). In contrast, diphenyldiazomethane ( 7c ) reacted exclusively with the C?S group leading to the 2‐(diphenylmethylidene)‐1,3‐thiazolidine 11 via [2+3] cycloaddition and a ‘two‐fold extrusion reaction’. Treatment of 8 or 9b with an excess of 7a in refluxing CH2Cl2 and in THF at room temperature in the presence of [Rh2(OAc)4], respectively, led to the 1,3‐thiazolidine‐2,4‐diones 15 and 20 , respectively, i.e., the products of the hydrolysis of the intermediate thiocarbonyl ylide. On the other hand, the reactions with 7b and 7c in boiling toluene yielded the corresponding 2‐methylidene derivatives 16, 21a , and 21b . Finally, the reaction of 11 with 7a occurred exclusively at the electron‐poor C?C bond, which is conjugated with the C?O group. In addition to the spirocyclopropane 23 , the C‐methylated 22 was formed as a minor product. The structures of the products (Z)‐ 8, 9a, 9b, 11 , and 23 were established by X‐ray crystallography.  相似文献   

15.
A facile one‐pot, three‐component protocol for the synthesis of novel spiro[3H‐indole‐3,2′‐thiazolidine]‐2,4′(1H)‐diones by condensing 1H‐indole‐2,3‐diones, 4H‐1,2,4‐triazol‐4‐amine and 2‐sulfanylpropanoic acid in [bmim]PF6 (1‐butyl‐3‐methyl‐1H‐imidazolium hexafluorophosphate) as a recyclable ionic‐liquid solvent gave good to excellent yields in the absence of any catalyst (Scheme 1 and Table 2). The advantages of this protocol over conventional methods are the mild reaction conditions, the high product yields, a shorter reaction time, as well as the eco‐friendly conditions.  相似文献   

16.
A new synthesis of a series of 3‐amino‐1H‐quinazoline‐2,4‐diones is described. The 1H‐quinazoline‐2,4‐dione 10 was made starting with fluorobenzoic acid in three high yielding steps. The key step of this synthesis involved the generation of the dianion of urea 7 and the subsequent intramolecular nucleophilic displacement of the 2‐fluoro to form the quinazolinedione ring. The 3‐amino moiety was incorporated using (2,4‐dinitro‐phenyl)‐hydroxylamine as the aminating reagent.  相似文献   

17.
The structures of the previously reported aryl‐perhydro‐1,3‐diazepine‐2,4‐diones are shown to be pyrro‐lidinone carboxamide derivatives by nmr spectroscopy.  相似文献   

18.
N‐phenoxyacetyl‐1,3‐oxazolidine derivatives were synthesized by the cyclization and acylation with β‐amino alcohol, ketone, and phenoxyacetyl chloride as the starting materials. All compounds were characterized by IR, 1H NMR, 13C NMR, ESI‐MS, and elemental analysis. The configuration of 4a was determined by X‐ray crystallography. The preliminary biological tests showed that all products could protect soybean against injury caused by 2,4‐D butylate to some extent.  相似文献   

19.
《中国化学》2018,36(2):112-118
Quinazoline‐2,4(1H,3H)‐diones are core structural subunits frequently found in many biologically important compounds. The reaction of 2‐​aminobenzonitrile and CO2, which was frequently studied, only provided N3‐unsubstituted quinazoline‐2,4(1H,3H)‐dione compounds. Herein we report palladium‐catalyzed cyclization reactions of o‐haloanilines, CO2 and isocyanides to prepare N3‐substituted quinazoline‐2,4(1H,3H)‐diones. Electron‐rich o‐bromoanilines participated in the cyclization reaction using Cs2CO3 at high temperature, and electron‐deficient o‐bromoaniline or o‐iodoaniline substrates conducted the reaction using CsF as base to deliver corresponding quinazoline‐2,4(1H,3H)‐dione products in good yields.  相似文献   

20.
3‐Alkyl/aryl‐3‐amino‐1H,3H‐quinoline‐2,4‐diones react with alkyl/aryl isocyanates to give novel 3‐alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones or 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones. In some cases, a mixture of both products was obtained and separated by fractional crystallization. All compounds were characterized by their 1H, 13C, ir and ms data and some of them also by 15N nmr data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号