首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3‐Hydroxyquinoline‐2,4‐diones 1 react with isocyanates to give novel 1,2,3,4‐tetrahydro‐2,4‐dioxoquinolin‐3‐yl (alkyl/aryl)carbamates 2 and/or 1,9b‐dihydro‐9b‐hydroxyoxazolo[5,4‐c]quinoline‐2,4(3aH,5H)‐diones 3 . Both of these compounds are converted, by boiling in cyclohexylbenzene solution in the presence of Ph3P or 4‐(dimethylamino)pyridine, to give 3‐(acyloxy)‐1,3‐dihydro‐2H‐indol‐2‐ones 8 . All compounds were characterized by IR, and 1H‐ and 13C‐NMR spectroscopy, as well as by EI mass spectrometry.  相似文献   

2.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

3.
1‐Substituted 3‐alkyl/aryl‐3‐amino‐1H,3H‐quinoline‐2,4‐diones ( 6 ) react with nitrourea to give 3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 10 ), 9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 11 ), and 3,3a‐dihydro‐5H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 12 ). Compounds 11 were dehydrated to 12 by the action of phosphorus pentoxide. All three types of compounds rearrange in boiling acetic acid to give three different types of products of molecular rearrangement. A proposed reaction mechanism is discussed.  相似文献   

4.
3‐Aminoquinoline‐2,4‐diones were stereoselectively reduced with NaBH4 to give cis‐3‐amino‐3,4‐dihydro‐4‐hydroxyquinolin‐2(1H)‐ones. Using triphosgene (=bis(trichloromethyl) carbonate), these compounds were converted to 3,3a‐dihydrooxazolo[4,5‐c]quinoline‐2,4(5H,9bH)‐diones. The deamination of the reduction products using HNO2 afforded mixtures of several compounds, from which 3‐alkyl/aryl‐2,3‐dihydro‐1H‐indol‐2‐ones and their 3‐hydroxy and 3‐nitro derivatives were isolated as the products of the molecular rearrangement.  相似文献   

5.
3‐Alkyl/aryl‐3‐amino‐1H,3H‐quinoline‐2,4‐diones react with alkyl/aryl isocyanates to give novel 3‐alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones or 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones. In some cases, a mixture of both products was obtained and separated by fractional crystallization. All compounds were characterized by their 1H, 13C, ir and ms data and some of them also by 15N nmr data.  相似文献   

6.
A new series of 3‐[ω‐[4‐(4‐substituted phenyl)piperazin‐1‐yl]alkyl]‐5H‐pyrimido[5,4‐b]indole‐(1H,3H)‐2,4‐diones ( 3–10 and 12–13 ) were synthesized from the N‐(2‐chloroethyl)‐N'‐[3‐(2‐ethoxycarbonyl)indolyl] urea ( 1 ) or the N‐(3‐chloropropyl)‐N'‐[3‐(2‐ethoxycarbonyl)indolyl] urea ( 2 ) and a number of 1‐(4‐substi‐tuted‐phenyl)piperazines. 3‐[2‐[4‐(4‐Aminophenyl)piperazin‐1‐yl]ethyl]‐5H‐pyrimido[5,4‐b]indole‐(1H,3H)2,4‐dione ( 14 ) was obtained by reduction of the parent nitro compound 8 . The obtained 5H‐pyrimido[5,4‐b]indole‐(1H,3H)2,4‐dione derivatives were tested towards cloned α1A, α1B and α1D adrenergic receptors subtypes in binding assays. Some compounds showed good affinity and selectivity for the α1D‐adrenoceptor subtype.  相似文献   

7.
2‐Bromobenzoic acids underwent an α‐arylation with cyclohexane‐1,3‐diones to give 1H‐benzo[c]chromene‐1,6(2H)‐diones under Ar atmosphere catalyzed by CuI/l ‐proline in the presence of Cs2CO3. The subsequent regioselective oxidation took place under O2 balloon automatically based on the substituents for the construction of structurally diversified benzo[c]coumarin derivatives.  相似文献   

8.
The tricyclic isatin, 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione, undergoes three‐component, one‐pot reactions with 1‐aryl‐3‐methylpyrazole‐5‐amines and cyclohexane‐1,3‐diones producing hexacyclic spiro products, hexahydrospiro[pyrazolo[3,4‐b]quinoline‐4,1‐pyrrolo[3,2,1‐ij]quinoline‐2′,5(1H,4′H)‐diones]. Comparable spiro condensation products are also obtained using 4‐hydroxy‐2H‐1‐benzopyran‐2‐one in place of cyclohexane‐1,3‐diones.  相似文献   

9.
4‐Hydroxy‐1H‐quinolin‐2‐ones ( 1 ) react with thiocyanogen in acetic acid to the corresponding 3‐thiocyanato‐1H,3H‐quinoline‐2,4‐diones ( 2 ) in good yields. In some cases, 3‐bromo‐1H,3H‐quinoline‐2,4‐diones ( 4 ) were isolated as minor reaction products. Compounds 2 are very reactive towards nucleophiles and easily hydrolyze to the corresponding 4‐hydroxy‐1H‐quinoline‐2‐ones ( 1 ).  相似文献   

10.
A new four‐component synthesis of spiro[4H‐indeno[1,2‐b]pyridine‐4,3′‐[3H]indoles] and spiro[acenaphthylene‐1(2H),4′‐[4H‐indeno[1,2‐b]pyridines] by the reaction of indane‐1,3‐dione, 1,3‐dicarbonyl compounds, isatins (=1H‐indole‐2,3‐diones) or acenaphthylene‐1,2‐dione, and AcONH4 in refluxing toluene in the presence of a catalytic amount of pyridine is reported.  相似文献   

11.
3‐Hydroxyquinoline‐2,4‐diones react with KSCN in the presence of the NH$\rm{{_{4}^{+}}}$ ions to generate 2,3‐dihydro‐3‐thioxoimidazo[1,5‐c]quinazolin‐5(6H)‐ones, 2,3‐dihydro‐2‐thioxo‐1H‐imidazo[4,5‐c]quinolin‐4(5H)‐ones, and products of molecular rearrangement of the 3‐aminoquinolinedione intermediates. Starting compounds with a benzyl (Bn) group at C(3) afford 3‐aminoquinolinediones, even when only AcONH4 is used. The results of the reaction between 3‐hydroxyquinoline‐2,4‐diones and KSCN in the presence of BuNH2 show that replacing a OH group with a secondary NH2 group is also possible.  相似文献   

12.
Previously unknown 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazoline]‐2,2′‐(7′H)‐diones and their N‐substituted analogues were obtained via reaction of 6‐R1‐3‐(2‐aminophenyl)‐1,2,4‐triazin‐5‐ones with isatin and its substituted derivatives. It was shown that alkylation of 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′‐(7′H)‐diones by N‐R3‐chloroacetamides or chloroacetonitrile in the presence of а base proceeds by N‐1 atom of isatin fragment. The spectral properties (1H and 13C NMR spectra) of synthesized compounds were studied, and features of spectral patterns were discussed. The high‐effective anticonvulsant and radical scavenging agents among 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′(7′H)‐diones and their N‐substituted derivatives were detected. It was shown that compounds 2.2 , 2.8 , and 3.1 exceed or compete the activity of the most widely used in modern neurology drug—lamotrigine on the pentylenetetrazole‐induced seizures model. The aforementioned fact may be considered as a reason for further profound study of synthesized compounds using other pathology models.  相似文献   

13.
The Michael‐type addition of a 4‐hydroxycoumarin (=4‐hydroxy‐2H‐1‐benzopyran‐2‐one) 1 to a β‐nitrostyrene (=(2‐nitroethenyl)benzene) 2 in the presence of AcONH4 leads to substituted (3E)‐3‐[amino(aryl)methylidene]chroman‐2,4‐diones (=(3E)‐3‐[amino(aryl)methylene]‐2H‐1‐benzopyran‐2,4(3H)‐diones) 4 (Table 1). High yields, short reaction time, and easy workup are advantages of this novel one‐pot three‐component reaction.  相似文献   

14.
Isoxazolo[5,4‐d]pyrimidine‐4,6(5H,7H)diones 2a – 2f have been synthesized from the reaction of ethyl 5‐amino‐3‐methyl‐4‐isoxazole carboxylate ( 1 ) with aryl isocyanates in the presence of Keggin heteropolyacid H3[PW12O40] as a green solid acid catalyst at room temperature in a one‐pot process in good yields.  相似文献   

15.
The iminoborane tBuB≡NtBu and the diazomethane tBuCH=N2 give the (2+3) cycloadduct [—HC(tBu)—N=N—N(tBu)=B(tBu)—] in a 1:1 reaction and the seven‐membered ring [—C(tBu)=N—NH—N(tBu)=B(tBu)—N(tBu)=B(tBu)—] in a 2:1 reaction. The (2+3) cycloadduct decomposes above 0 °C to give the seven‐membered ring, N2, and HC(tBu)=N—N=CH(tBu) in the ratio 2:1:1. The borane tBuB≡NtBu and organic azides R″N3 yield the (2+3) cycloadducts [—R″N—N=N—N(tBu)=B(tBu)—] (R″ = Me, Et, Pr, Bu, iBu, sBu, C5H11, c‐C5H9, c‐C6H11, Bzl, EtOOC).  相似文献   

16.
The first 4π‐electron resonance‐stabilized 1,3‐digerma‐2,4‐diphosphacyclobutadiene [LH2Ge2P2] 4 (LH=CH[CHNDipp]2 Dipp=2,6‐iPr2C6H3) with four‐coordinate germanium supported by a β‐diketiminate ligand and two‐coordinate phosphorus atoms has been synthesized from the unprecedented phosphaketenyl‐functionalized N‐heterocyclic germylene [LHGe‐P=C=O] 2 a prepared by salt‐metathesis reaction of sodium phosphaethynolate (P≡C?ONa) with the corresponding chlorogermylene [LHGeCl] 1 a . Under UV/Vis light irradiation at ambient temperature, release of CO from the P=C=O group of 2 a leads to the elusive germanium–phosphorus triply bonded species [LHGe≡P] 3 a , which dimerizes spontaneously to yield black crystals of 4 as isolable product in 67 % yield. Notably, release of CO from the bulkier substituted [LtBuGe‐P=C=O] 2 b (LtBu=CH[C(tBu)N‐Dipp]2) furnishes, under concomitant extrusion of the diimine [Dipp‐NC(tBu)]2, the bis‐N,P‐heterocyclic germylene [DippNC(tBu)C(H)PGe]2 5 .  相似文献   

17.
A mild and efficient protocol for the synthesis of spiro[indoline-3,4′-pyrazolo[3,4-b]quinoline]diones via a one-pot, three-component condensation of isatins, 1,3-dicarbonyls, and 5-amino-1-phenyl-3-methylpyrazole using [NMP]H2PO4 as a catalyst in EtOH/H2O is described. The catalyst could be recycled and reused four times without significant loss of activity. Spiro[indoline-3,4′-pyrazolo[3,4-b]quinoline]diones with stabilized zwitter ionic resonance structures showed feasible application as new fluorescent probes and pH indicators. These chemosensors have a good wavelength shift and showed excellent sensitivity in the range of pH from 11 to 13.  相似文献   

18.
10-Chloro-7,8-dimethylpyrimido[5,4-b]quinolin-2,4(1H,3H)dione (I) was unreactive toward ammonia but it reacted with 2 molecules of n-butylamine, presumably via Dimroth-type ring-opening and closure, to give the N3-butyl, N10-butylamino derivative (IV). In similar reactions of 10-chloro-2,4-dimethoxy-7,8-dimethylpyrimido[5,4-b]quinoline (II) only the 4-meth-oxyl was displaced by either ammonia or n-butylamine. Alkyllithium reagents also displaced the 4-methoxyl as well as added to the 3,4 double bond of II to yield the corresponding gem-dialkyl substituted (C4) derivatives; the C10 chlorine remained unreactive. 2,4-Dimethoxy-7,8-di-methylpyrimido[5,4-b]quinoline-10-one (III) could be alkylated only in the form of the thallium salt. Treatment of the benzyl derivative of III with methylmagnesium bromide led only to the displacement of the 4-methoxyl by a methyl group.  相似文献   

19.
Syntheses of 5H-[1,2,4]triazolo[5′,1′:2,3][1,3]thiazino[5,4-c]quinolines 8, 5H-[1,2,4]triazolo[3′,4′:2)3][1,3]thiazino[5,4-c]quinolines 9, 5H-[1,2,4]triazolo[5′,1′:2,3][1,3]thiazino[5,6-c]quinolines 14 and 5H-[1,2,4]triazolo[3′,4′:2,3][1,3]thiazino[5,6-c]quinolines 15 are described starting from 4-chloro-3-chloromethylquinaldine (4) and 1,2,4-triazole-5-thiols 5 taking advantage of different reactivity of the chlorine atoms of 4 under different reaction conditions. The structures of products 8, 9, 14 and 15 and the intermediates leading to them were confirmed by desulfurization, unequivocal syntheses and nmr spectroscopy as well.  相似文献   

20.
《中国化学》2018,36(2):112-118
Quinazoline‐2,4(1H,3H)‐diones are core structural subunits frequently found in many biologically important compounds. The reaction of 2‐​aminobenzonitrile and CO2, which was frequently studied, only provided N3‐unsubstituted quinazoline‐2,4(1H,3H)‐dione compounds. Herein we report palladium‐catalyzed cyclization reactions of o‐haloanilines, CO2 and isocyanides to prepare N3‐substituted quinazoline‐2,4(1H,3H)‐diones. Electron‐rich o‐bromoanilines participated in the cyclization reaction using Cs2CO3 at high temperature, and electron‐deficient o‐bromoaniline or o‐iodoaniline substrates conducted the reaction using CsF as base to deliver corresponding quinazoline‐2,4(1H,3H)‐dione products in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号