首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
A dynamics study [cross section and microscopic mechanism versus collision energy (E(T))] of the reaction O+ + H2 --> OH+ + H, which plays an important role in Earth's ionosphere and interstellar chemistry, was conducted using the quasiclassical trajectory method, employing an analytical potential energy surface (PES) recently derived by our group [R. Martinez et al., J. Chem. Phys. 120, 4705 (2004)]. Experimental excitation functions for the title reaction, as well as its isotopic variants with D2 and HD, were near-quantitatively reproduced in the calculations in the very broad collision energy range explored (E(T) = 0.01-6.0 eV). Intramolecular and intermolecular isotopic effects were also examined, yielding data in good agreement with experimental results. The reaction occurs via two microscopic mechanisms (direct and nondirect abstraction). The results were satisfactorily interpreted based on the reaction probability and the maximum impact parameter dependences with E(T), and considering the influence of the collinear [OHH]+ absolute minimum of the PES on the evolution from reactants to products. The agreement between theory and experiment suggests that the reaction mainly occurs through the lowest energy PES and nonadiabatic processes are not very important in the wide collision energy range analyzed. Hence, the PES used to describe this reaction is suitable for both kinetics and dynamics studies.  相似文献   

2.
The close-coupling hyperspherical (CCH) exact quantum method was used to study the title barrierless reaction up to a collision energy (E(T)) of 0.75 eV, and the results compared with quasiclassical trajectory (QCT) calculations to determine the importance of quantum effects. The CCH integral cross section decreased with E(T) and, although the QCT results were in general quite similar to the CCH ones, they presented a significant deviation from the CCH data within the 0.2-0.6 eV collision energy range, where the QCT method did not correctly describe the reaction probability. A very good accord between both methods was obtained for the OH(+) vibrational distribution, where no inversion of population was found. For the OH(+) rotational distributions, the agreement between the CCH and QCT results was not as good as in the vibrational case, but it was satisfactory in many conditions. The kk(') angular distribution showed a preferential forward character, and the CCH method produced higher forward peaks than the QCT one. All the results were interpreted considering the potential energy surface and plots of a representative sampling of reactive trajectories.  相似文献   

3.
采用准经典轨线方法研究了在不同碰撞能下,碰撞反应N(4S)+NO(X2Π)→ N2(X3Σg- )+O(3P)在两个最低势能面3A 和 3A'上产物与反应物之间的矢量相关. 结果表明,对于不同的碰撞能,在两个势能面上反应产物的转动取向展示了不同的特征和趋势. 随着碰撞能的增加,发生在3A 势能面上的反应主要受外平面机理支配,而发生在 3A' 势能面上的反应倾向于受内平面机理支配. 这些差异来自于两个势能面的不同构型.  相似文献   

4.
沈长圣  吴韬  居冠之  边文生 《化学学报》2001,59(11):1919-1924
用辛准经典轨迹法模拟了Cl+H2反应在mBW2势能面上的动力学行为。研究了各种初始条件下的反应碰撞截面,产物的能量分配,角度分布和态分布。另外,我们还比较了反应物的三种能量形式(平动能,转动能和振动能)对反庆的有效性。  相似文献   

5.
Reaction probabilities as a function of total angular momentum (opacity functions) and the resulting reaction cross sections for the collision of open shell S((1)D) atoms with para-hydrogen have been calculated in the kinetic energy range 0.09-10 meV (1-120 K). The quantum mechanical hyperspherical reactive scattering method and quasi-classical trajectory and statistical quasi-classical trajectory approaches were used. Two different ab initio potential energy surfaces (PESs) have been considered. The widely used reproducing kernel Hilbert space (RKHS) PES by Ho et al. [T.-S. Ho, T. Hollebeek, H. Rabitz, S. D. Chao, R. T. Skodje, A. S. Zyubin, and A. M. Mebel, J. Chem. Phys 116, 4124 (2002)] and the recently published accurate double many-body expansion (DMBE)/complete basis set (CBS) PES by Song and Varandas [Y. Z. Song and A. J. C. Varandas, J. Chem. Phys. 130, 134317 (2009)]. The calculations at low collision energies reveal very different dynamical behaviors on the two PESs. The reactivity on the RKHS PES is found to be considerably larger than that on the DMBE/CBS PES as a result of larger reaction probabilities at low total (here also orbital) angular momentum values and to opacity functions which extend to significantly larger total angular momentum values. The observed differences have their origin in two major distinct topographic features. Although both PESs are essentially barrierless for equilibrium H-H distances, when the H-H bond is compressed the DMBE/CBS PES gives rise to a dynamical barrier which limits the reactivity of the system. This barrier is completely absent in the RHKS PES. In addition, the latter PES exhibits a van der Walls well in the entrance channel which reduces the height of the centrifugal barrier and is able to support resonances. As a result, a significant larger cross section is found on this PES, with marked oscillations attributable to shape resonances and/or to the opening of partial wave contributions. The comparison of the results on both PESs is illustrative of the wealth of the dynamics at low collision energy. It is also illuminating about the difficulties encountered in modeling an all-purpose global potential energy surface.  相似文献   

6.
The reaction N+NO-->N(2)+O was studied by means of the time-dependent real wave-packet (WP) method and the J-shifting approximation. We consider the ground 1 (3)A(") and first excited 1 (3)A(') triplet states, which correlate with both reactants and products, using analytical potential energy surfaces (PESs) recently developed in our group. This work extends our previous quantum dynamics study, and probabilities, cross sections, and rate constants were calculated and interpreted on the basis of the different shapes of the PESs (barrierless 1 (3)A(") and with barrier 1 (3)A(') surfaces, respectively). The WP rate constant (k(1)) shows a weak dependence on T(200-2500 K), as the dominant contribution to reactivity is provided by the barrierless ground PES. There is a good agreement of WP k(1) with the measurements and variational transition state theory (VTST) data, and also between the WP and VTST k(1)(1 (3)A(")) results. Nevertheless, there is a large discrepancy between the WP and VTST k(1)(1 (3)A(')) results. Product state distributions were also calculated for the much more reactive 1 (3)A(") PES. There is an excellent agreement with the experimental average fraction of vibrational energy in N(2)(25+/-3%), the only measured dynamics property of this reaction.  相似文献   

7.
Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110). The vibrational de-excitation probability P(v=1,j = 0 --> v = 0) computed with the QCT method is in remarkably good agreement with the quantum dynamical results for normal incidence energies E(n) between 0.2 and 0.6 eV. The QCT result for the vibrational excitation probability P(v = 0,j = 0 --> v = 1) is likewise accurate for E(n) between 0.8 and 1 eV, but the QCT method overestimates vibrational excitation for lower E(n). The QCT method gives probabilities for rovibrationally (in)elastic scattering, P(v = 1,j = 1 --> v('),j(')), which are in remarkably good agreement with quantum dynamical results. The rotationally averaged, initial vibrational state-selective reaction probability obtained with QCT agrees well with the initial vibrational state-selective reaction probability extracted from molecular beam experiments for v = 1, for the range of collision energies for which the v=1 contribution to the measured total sticking probability dominates. The quantum dynamical probabilities for rovibrationally elastic scattering of (v = 1,j = 1) H(2) from Cu(110) are in good agreement with experiment for E(n) between 0.08 and 0.25 eV.  相似文献   

8.
We present an exact quantum dynamical study and quasi-classical trajectory (QCT) calculations for the exchange and abstraction processes for the H + HS reaction. These calculations were based on a newly constructed high-quality potential energy surface for the lowest triplet state of H(2)S ((3)A"). The ab initio single-point energies were computed using complete active space self-consistent field and multi-reference configuration interaction method with a basis set of aug-cc-pV5Z. The time-dependent wave packet (TDWP) method was used to calculate the total reaction probabilities and integral cross sections over the collision energy (E(col)) range of 0.0-2.0 eV for the reactant HS initially at the ground state and the first vibrationally excited state. It was found that the initial vibrational excitation of HS enhances both abstraction and exchange processes. In addition, a good agreement is found between QCT and TDWP reaction probabilities at the total momentum J = 0 as a function of collision energy for the H + HS (v = 0, j = 0) reaction.  相似文献   

9.
A global potential energy surface (PES) for the electronic ground state of Li2H system is constructed over a large configuration space. About 30 000 ab initio energy points have been calculated by MRCI‐F12 method with aug‐cc‐pVTZ basis set. The neural network method is applied to fit the PES and the root mean square error of the current PES is only 1.296 meV. The reaction dynamics of the title reaction has been carried out by employing time‐dependent wave packet approach with second order split operator on the new PES. The reaction probability, integral cross section and thermal rate constant are obtained from the dynamics calculation. In most of the collision energy regions, the integral cross sections are in well agreement with the results reported by Gao et al. The rate constant calculated from the new PES increases in the temperature range of present investigation.  相似文献   

10.
The quantum mechanics (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the title reaction with the ground minimal allowed rotational state of CH (j = 1) on the 1 1A′ potential energy surface. For the reaction probability at total angular momentum J = 0, a similar trend of the QM and QCT calculations is observed, and the QM results are larger than the latter almost in the whole considered energy range (0.1–1.5 eV). The QCT integral cross sections are larger than the QM results with centrifugal sudden approximation, while smaller than those from QM method including Coriolis coupling for collision energies bigger than 0.25 eV. The quantum wave‐packet computations show that the Coriolis coupling effects get more and more pronounced with increasing of J. In addition to the scalar properties, the stereodynamical properties, such as the average rotational alignment factor <P2( j′?k )>, the angular distributions Pr), P(?r), Pr,?r), and the polarization‐dependent generalized differential cross sections have been explored in detail by QCT approach. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
We present a detailed theoretical investigation of the dynamics corresponding to the strongly endothermic Br + H(2) (v = 0-1, j = 0) → H + HBr reaction in the 0.85 to 1.9 eV total energy range. State-averaged and state-to-state results obtained through time-independent wave packet (TIWP) and time-independent quantum mechanical (TIQM) calculations and quasiclassical trajectories (QCT) are compared and analyzed. The agreement in the results obtained with both quantum mechanical results is very good overall. However, although QCT calculations reproduce the general features, their agreement with the QM results is sometimes only qualitative. The analysis of the mechanism based on state-averaged results turns out to be deceptive and conveys an oversimplified picture of the reaction consistent with a direct-rebound mechanism. Consideration of state-to-state processes, in contrast, unveils the existence of multiple mechanisms that give rise to a succession of maxima in the differential cross section (DCS). Such mechanisms correlate with different sets of partial waves and display similar collision times when analyzed through the time-dependent DCS.  相似文献   

12.
The reaction D + H2 → HD + H has been investigated in two molecular beam scattering experiments. Angular and time-of-flight distributions have been measured for the initial vibrational ground state (v = 0) at a most probable collision energy of Ecm = 1.5 eV and for the first vibrational excited state (v = 1) at Ecm = 0.28 eV with the same apparatus. Results for the ground-state experiment are compared with quasiclassical trajectory calculations(QCT) on the LSTH-hypersurface transformed into the laboratory system and averaged over the apparatus distributions. The agreement isquite satisfactory. At this high collision energy the HD products are no longer scattered in a backward direction but in a wide angular region concentrated about θ = 90° in the center-of-mass system. The absolute reactive cross section has been determined and the agreement with the theoretical value from QCT calculations is within the experimental error. The high sensitivity of the experiment to different properties of the doubly differential cross section has also been demonstrated. A preliminary evaluation of the experiment with initial vibrational excitation (v = 1) shows that the HD-product molecules are preferably backward scattered and the change of internal energy is small supporting the concept of a reaction which is adiabatic with respect to the internal degrees of freedom.  相似文献   

13.
The nascent CaH product in the reaction Ca(4s4p1P1) + H2 --> CaH(X2Sigma+) + H is obtained using a pump-probe technique. The CaH(v = 0,1) distributions, with a population ratio of CaH(v = 0)/CaH(v = 1) = 2.7+/-0.2, may be characterized by low Boltzmann rotational temperature. According to Arrhenius theory, the temperature dependence measurement yields a potential barrier of 3820+/-480 cm(-1) for the current reaction. As a result of the potential energy surfaces (PES) calculations, the reaction pathway favors a Ca insertion into the H2 bond along a (near) C2v geometric approach. As the H2 bond is elongated, the configurational mixing between the orbital components of the 4p and nearby low-lying 3d state with the same symmetry makes significant the nonadiabatic transition between the 5A' and 2A' surface in the repulsive limbs. Therefore, the collision species are anticipated to track along the 5A' surface, then undergo nonadiabatic transition to the inner limb of the 2A' surface, and finally cross to the reactive 1A' surface. The observed energy barrier probably accounts for the energy requirement to surmount the repulsive hill in the entrance. The findings of the nascent CaH product distributions may be reasonably interpreted from the nature of the intermediate structure and lifetime after the 2A'-1A' surface transition. The distinct product distributions between the Ca(4 1P1) and Mg(3 1P1) reactions with H2 may also be realized with the aid of the PES calculations.  相似文献   

14.
In this work we present a dynamically biased statistical model to describe the evolution of the title reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305 (2007)]. A recent global potential energy surface is used here to calculate the capture probabilities, instead of the long-range ion-induced dipole interactions. The dynamical constraints are introduced by considering a scrambling matrix which depends on energy and determine the probability of the identity/hop/exchange mechanisms. These probabilities are calculated using QCT. It is found that the high zero-point energy of the fragments is transferred to the rest of the degrees of freedom, what shortens the lifetime of H(5) (+) complexes and, as a consequence, the exchange mechanism is produced with lower proportion. The zero-point energy (ZPE) is not properly described in quasi-classical trajectory calculations and an approximation is done in which the initial ZPE of the reactants is reduced in QCT calculations to obtain a new ZPE-biased scrambling matrix. This reduction of the ZPE is explained by the need of correcting the pure classical level number of the H(5) (+) complex, as done in classical simulations of unimolecular processes and to get equivalent quantum and classical rate constants using Rice-Ramsperger-Kassel-Marcus theory. This matrix allows to obtain a ratio of hop/exchange mechanisms, α(T), in rather good agreement with recent experimental results by Crabtree et al. [J. Chem. Phys. 134, 194311 (2011)] at room temperature. At lower temperatures, however, the present simulations predict too high ratios because the biased scrambling matrix is not statistical enough. This demonstrates the importance of applying quantum methods to simulate this reaction at the low temperatures of astrophysical interest.  相似文献   

15.
A new potential energy surface (PES) for the quintet state of rigid O(2)((3)Sigma(g)(-)) + O(2)((3)Sigma(g)(-)) has been obtained using restricted coupled-cluster theory with singles, doubles, and perturbative triple excitations [RCCSD(T)]. A large number of relative orientations of the monomers (65) and intermolecular distances (17) have been considered. A spherical harmonic expansion of the interaction potential has been built from the ab initio data. It involves 29 terms, as a consequence of the large anisotropy of the interaction. The spherically averaged term agrees quite well with the one obtained from analysis of total integral cross sections. The absolute minimum of the PES corresponds to the crossed (D(2d)) structure (X shape) with an intermolecular distance of 6.224 bohrs and a well depth of 16.27 meV. Interestingly, the PES presents another (local) minimum close in energy (15.66 meV) at 6.50 bohrs and within a planar skewed geometry (S shape). We find that the origin of this second structure is due to the orientational dependence of the spin-exchange interactions which break the spin degeneracy and leads to three distinct intermolecular PESs with singlet, triplet, and quintet multiplicities. The lowest vibrational bound states of the O(2)-O(2) dimer have been obtained and it is found that they reflect the above mentioned topological features of the PES: The first allowed bound state for the (16)O isotope has an X structure but the next state is just 0.12 meV higher in energy and exhibits an S shape.  相似文献   

16.
17.
Three-dimensional time-dependent quantum wave packet calculation was performed to study the reaction dynamics of Cl+H2(D2) on two potential energy surfaces (CW PESs). The first CW PES is with spin-orbit correction; the second is without spin-orbit correction. The integral cross-section and reaction probability as a function of collision energy are calculated in the collision energy range of 0.1 eV to 1.4 eV. For reaction of Cl with D2, the reaction section with spin-orbit correction has a shift toward the high energy because the barrier height increases. As for the reaction of Cl with H2 at low collision energy, it is more reactive on the PES with spin-orbit correction than on the low barrier height PES without spin-orbit correction, due to the tunnel effect for the reaction of the Cl with H2. When the collision energy is higher than 0.7 eV, the reactivity on the low barrier height PES is larger than that on the high barrier height PES. It is believed that the barrier height plays a very important role in the reactivity of Cl with (H2, D2). For the Cl+H2 reaction the barrier width is also very important because of the tunneling effect.  相似文献   

18.
Time-independent quantum mechanical (TIQM) approach (helicity basis truncated at k = 2) has been used for computing differential and integral cross sections for the exchange reaction H- + D2 (v = 0, j = 0-4) --> HD + D- and D- + H2 (v = 0, j = 0-3) --> HD + H- in three dimensions on an accurate ab initio potential energy surface. It is shown that the j-weighted differential reaction cross section values are in good agreement with the experimental results reported by Zimmer and Linder at four different relative translational energies (Etrans = 0.55, 0.93, 1.16 and 1.48 eV) for (H-, D2) and at one relative translational energy (Etrans = 0.6 eV) by Haufler et al. for both (H-, D2) and (D-, H2) collisions. The j-weighted integral reaction cross section values are in good agreement with the crossed beam measurements by Zimmer and Linder in the Etrans range 0.5-1.5 eV and close to the guided ion beam results by Haufler et al. for (H-, D2) in the range 0.8-1.2 eV. Time-dependent quantum mechanical (TDQM) results obtained using centrifugal sudden approximation are reported in the form of integral reaction cross section values as a function of Etrans in the range 0.3-3.0 eV for both reactions in three dimensions on the same potential energy surface. The TDQM reaction cross section values decline more sharply than the TIQM results with increase in the initial rotational quantum number (j) for the D2 molecules in their ground vibrational state (v = 0) for (H-, D2) collisions. The computed j-weighted reaction cross section values are in good agreement with the experimental results reported by Zimmer and Linder for (H-, D2) collisions and guided ion beam results by Haufler et al. for both (H-, D2) and (D-, H2) collisions for energies below the threshold for electron detachment channel.  相似文献   

19.
Time-dependent real wave packet (RWP) and quasiclassical trajectory (QCT) calculations have been carried out to study the H(+) + LiH reaction on the ab initio potential-energy surface of Martinazzo et al. [J. Chem. Phys., 2003, 119, 11241]. Total initial state-selected and final state-resolved reaction probabilities for the two possible reaction channels, H(2)(+) + Li and LiH + H(+), have been calculated for total angular momentum J=0 at a broad range of collision energies. Integral cross sections and thermal rate coefficients have been calculated using the QCT method and from the corresponding J=0 RWP reaction probabilities by means of a capture model. The calculated thermal rate coefficients are found to be nearly independent of temperature in the 100-500 K interval with a value of approximately 10(-9) cm(3) s(-1), which is in good agreement with estimates used in evolutionary models of early-Universe lithium chemistry. The RWP results are found to be in good agreement overall with the corresponding QCT calculations.  相似文献   

20.
Quantum mechanical wave packet calculations are carried out for the H((2)S) + FO((2)II) --> OH((2)II) + F((2)P) reaction on the adiabatic potential energy surface of the ground (3)A' triplet state. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been estimated from the J = 0 results by using J-shifting approximation based on a capture model. Then, the integral cross sections and initial state-selected rate constants have been calculated. The calculations show that the initial state-selected reaction probabilities are dominated by many sharp peaks. The reaction cross section does not manifest any sharp oscillations and the initial state-selected rate constants are sensitive to the temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号