首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The principal subject discussed in the current paper is the radical polymerization of styrene in the three- and four component microemulsions stabilized by a cationic emulsifier. Polymerization in the o/w microemulsion is a new polymerization technique which allows to prepare the polymer latexes with the very high particle interface area and narrow particle size distribution. Polymers formed are very large with a very broad molecular weight distribution. In emulsion and microemulsion polymerizations, the reaction takes place in a large number of isolated loci dispersed in the continuous aqueous phase. However, in spite of the similarities between emulsion and microemulsion polymerization, there are large differences caused by the much larger amount of emulsifier in the latter process. In the emulsion polymerization there are three rate intervals. In the microemulsion polymerization only two reaction rate intervals are commonly detected: first, the polymerization rate increases rapidly with the reaction time and then decreases steadily. Essential features of microemulsion polymerization are as follows: (1) polymerization proceeds under non-stationary state conditions; (2) size and particle concentration increases throughout the course of polymerization; (3) chain-transfer to monomer/exit of transferred monomeric radical/radical re-entry events are operative; and (4) molecular weight is independent of conversion and distribution of resulting polymer is very broad. The number of microdroplets or monomer-starved micelles at higher conversion is high and they persist throughout the reaction. The high emulsifier/water ratio ensures that the emulsifier is undissociated and can penetrate into the microdroplets. The presence of a large amount of emulsifier strongly influences the reaction kinetics and the particle nucleation. The mixed mode particle nucleation is assumed to govern the polymerization process. At low emulsifier concentration the micellar nucleation is dominant while at a high emulsifier concentration the interaction-like homogeneous nucleation is operative. Furthermore, the paper is focused on the initiation and nucleation mechanisms, location of initiation locus, and growth and deactivation of latex particles. Furthermore, the relationship between kinetic and molecular weight parameters of the microemulsion polymerization process and colloidal (water/particle interface) parameters is discussed. In particular, we follow the effect of initiator and emulsifier type and concentration on the polymerization process. Besides, the effects of monomer concentration and additives are also evaluated.  相似文献   

2.
The polymerization of acrylamide in inverse microemulsions stabilized by Aerosol OT emulsifier and initiated with azobisisobutyronitrile (AIBN) or potassium persulfate (K2S2O8) has been investigated. The inverse polyacrylamide latexes formed are clear and highly stable. A dilatometric technique was used to follow the conversion of monomer at T = 45°C. The rate of polymerization is first order with respect to initial monomer concentration in the presence of AIBN, and is 1.5 order with K2S2O8. An inverse relationship between molecular weight and emulsifier concentration is found which suggests participation of the emulsifier in the initiation reaction. This is confirmed by the independence of the molecular weight of polyacrylamide on the concentration of the initiators. High values of the rate of polymerization are obtained combined with high molecular weights (up to 107). An important and novel feature of this microemulsion process is that each final latex particle consists of one single molecule of polyacrylamide in a collapsed state. This suggests kinetics which do not follow the Smith and Ewart theory but are characterized by continuous particle nucleation.  相似文献   

3.
The microemulsion polymerization of methyl methacrylate was studied. The effects of feeding modes on the structure and the properties of the obtained polymer microlatex were investigated by measuring the conversion, the transmittance and the refractive index of the latex, and by measuring the particle size, the molecular weight and the glass transition temperature (Tg) of the polymers. The results show that compared to the batch feeding mode, the semi-continuous feeding mode is more favorable to form a PMMA microlatex with a higher transmittance, a smaller particle size, a higher molecular weight and a higher Tg. And the obtained PMMA microlatex has a 30 %-40 % (mass fraction) polymer content, a 0.03 emulsifier/water weight ratio, a 0.05emulsifier/monomer weight ratio and a 17 nm average particle diameter, which is very important for the industrialization of the microemulsion polymerization technique.  相似文献   

4.
A systematic study of the terpolymerization of butyl acrylate/methyl methacrylate/vinyl acetate (BA/MMA/VAc) was conducted. In this stage of the study, batch emulsion terpolymerizations were performed in a 5 L stainless steel pilot plant reactor. The experiments were designed using a Bayesian (optimal) technique. The polymers produced were characterized for conversion, composition, molecular weight, and particle size. Conversion, terpolymer composition, number- and weight-average molecular weight, and average particle size results are discussed in light of the influence of seven factors and the interaction of these factors. The factors studied include monomer feed composition, initiator concentration, chain transfer agent concentration, impurity concentration, initiator type, emulsifier concentration, and temperature. A “two-stage rate” phenomenon, similar to that occurring in bulk co- and terpolymerization and emulsion copolymerization of acrylic/vinyl acetate systems was observed in the conversion, composition and molecular weight data. Furthermore, an interesting yet often ignored effect of impurities on emulsion polymerization kinetics was explained. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1659–1672, 1997  相似文献   

5.
Inverse emulsion polymerization of aqueous solution of acrylamide (AM) in toluene is carried out using polystyrene-graft-polyoxyethylene (PSt-g-PEO) as an emulsifier. The kinetics of polymerization, morphology of the particle, and particle size of the inverse emulsion have been investigated. The rates of polymerization are found to be proportional to the initiator concentration, the monomer concentration, and the emulsifier concentration. The morphology of the particle shows a spherical structure. The effects of amphipathic graft copolymer structure on the average molecular weight of polyacrylamide are studied. The mechanism of the inverse emulsion polymerization using amphipathic graft copolymer as emulsifier is proposed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2719–2725, 1999  相似文献   

6.
Polymer molar mass distributions critically affect macroscopic characteristics and performance of polymeric materials. While multi-detector methods coupled to size exclusion chromatography (SEC) are widely used to measure endproduct mass distributions, less progress has been made in simultaneously controlling and verifying the evolution of these distributions during synthesis. This work focuses on quantitative predictions and online verification of conversion kinetics and of molecular weight during free radical homopolymerization of acrylamide, where reagents were fed into the reactor during the reaction. The central task is to establish and experimentally test a formalism combining free radical polymerization kinetics with time dependent processes related to flows of material into and out of the reactor. Monomer feed experiments were performed that alternately hold molecular weight constant and ramp the weight up, in contrast to batch reactions, where molecular weight decreases. Three types of initiator feed ‘tapers’ were also used to produce predictable conversion kinetics and mass distributions: (i) constant initiator feed, (ii) linearly stepped feed to produce Gaussian conversion kinetics, and (iii) booster shots to produce multi-modal masses. Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP) was used to follow the conversion and evolution of the average mass distribution, and multi-detector SEC was used to cross-check results and measure full distributions of endproducts. In general, there was good agreement between the predictions and results. In future work this approach can be used as an Ansatz for reaction trajectory prediction, and the online monitoring signals exploited to make feedback controlled corrections to the reagent flows and other reaction conditions.  相似文献   

7.
以Ni(COD)2和含磷、氧配体为催化剂,利用乳液聚合法合成了间规聚苯乙烯.对产物进行了13C-NMR、1H-NMR、GPC、TEM、DSC、TG等表征.在此反应体系下,最佳聚合条件为:乳化剂用量为1.50 g,[St]0=1.79 mol·L-1,T=60℃,t=2h,[Ni(COD)2]=1.102 mmol·L-...  相似文献   

8.
The batch emulsion polymerization kinetics of styrene (St) initiated by a water-soluble peroxodisulfate in the presence of a nonionic emulsifier was investigated. The polymerization rate versus the conversion curves showed two nonstationary rate intervals, two rate maxima, and Smith–Ewart Interval 2 (nondistinct). The rate of polymerization and number of nucleated polymer particles were proportional to the 1.4th and 2.4th powers, respectively, of the emulsifier concentration. Deviation from the micellar nucleation model was attributed to the low water solubility of the emulsifier, the low level of the micellar emulsifier, and the mixed modes of particle nucleation. In emulsion polymerizations with a low emulsifier concentration, the number of radicals per particle and particle size increased with increasing conversion, and the increase was more pronounced at a low conversion. By contrast, in emulsion polymerizations with a high emulsifier concentration, the number of radicals per particle decreased with increasing conversion. This is discussed in terms of the mixed models of particle nucleation, the gel effect, and the pseudobulk kinetics. The formation of monodisperse latex particles was attributed to coagulative nucleation and droplet nucleation for the polymerizations with low and high emulsifier concentrations, respectively. The effects of the continuous release of the emulsifier from nonmicellar aggregates and monomer droplets, the close-packing structure of the droplet surface, and the hydrophobic nature of the emulsifier on the emulsion polymerization of St are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4422–4431, 1999  相似文献   

9.
Investigation of photopolymerization kinetics of 4-(4-methacryloyloxyphenyl)-butan-2-one (1) in comparison with 2-phenoxyethyl methacrylate (2) and phenyl methacrylate (3) using a UV-LED emitting at 395 nm shows significantly faster polymerization of 1 compared to both 2 and 3 at 40°C. Vitrification affects photopolymerization kinetics of all methacrylates under investigation. Interestingly, quantitative final conversion is observed during photoinitiated polymerization of 1 and 2 whereas 3 shows limited conversion at about 80%. Furthermore, higher degree of polymerization is obtained by photoinitiated polymerization of 1 compared to 2 and 3. This shows that the 3-oxobutyl substituent at the phenyl ring of 1 significantly affects both polymerization kinetics and final conversion of the photoinitiated polymerization. Moreover, an additional higher molecular weight fraction is observed in case of polymerization of 1 at 85°C that is above the glass transition temperature of the polymer formed during photoinitiated polymerization. As a thermal polymerization at 85°C in the absence of light results in a high molecular weight polymer as well, an additional thermal process may be discussed as reason for the higher molecular weight polymer fraction in case of the photopolymer made at 85°C.  相似文献   

10.
A comprehensive experimental investigation of the inverse microsuspension polymerization of acrylamide using an oil-soluble initiator and a block copolymeric surfactant whose hydrophobic miety is poly(12-hydroxystearic acid) and whose hydrophilic moeity is polyethylene oxide was carried out. It was found that the initial polymerization rate was first order with respect to molar monomer concentration, first order with respect to molar initiator concentration and zeroth order with respect to molar emulsifier concentration. Based on these experimental findings, a mechanism was proposed which includes initiation, propagation transfer to monomer and termination. It also includes transfer to impurities which are believed to be found in the surfactant. The kinetic model developed from the proposed mechanism is found to be in good agreement with the experimental conversion and weight-average molecular weight data. Comparing with sorbitan esters of fatty acids, the copolymeric surfactant provides higher polymerization rate and very high and linear molecular weight comparable to those obtained by solution polymerization.  相似文献   

11.
The oil-in-water microemulsion copolymerizations of butyl acrylate and acrylonitrile initiated by water (ammonium peroxodisulfate, AP)—and oil (dibenzoyl peroxide, DBP)—soluble radical initiators were investigated. Copolymerizations show two distinct nonstationary rate regions. The maximum rate of polymerization is found to be proportional to the 0.48th and 0.65th power of the AP and DBP concentration, respectively. The rate per particle is found to be proportional to the 0.05th and 0.2nd power of the AP and DBP concentration, respectively. The rate of polymerization decreases with increasing the acrylonitrile concentration. The number of particle increases with increasing conversion up to 50–70%. The number-average molecular weight increases with conversion up to ca. 20% and then decreases. The number-average molecular weights were found to decrease with increasing the concentration of both initiator and acrylonitrile. The experimental results were discussed in terms of the water-phase polymerization, the chain-transfer and radical desorption events, the particle nucleation during the whole polymerization, and recruiting monomer and emulsifier from the free monomer-swollen emulsifier micelles. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Radiation-induced emulsion polymerization of ethylene with potassium myristate as an emulsifier was studied in connection with the kinetics and the mechanism. The molecular weight of polymer was relatively low, of the order of 103, when a sufficient amount of emulsifier was used. However, polyethylene gel was produced in the absence of a sufficient amount of emulsifier. The rate of polymerization was proportional to the 0.5 power of dose rate and increased slightly with increasing emulsifier concentration. The rate of seeded polymerization followed a similar trend to that for conventional polymerization. Kinetic analysis of these results suggests that the escape of radicals produced by chain transfer of propagating radical with the emulsifier and the monomer from polymer particles into the aqueous phase plays an important part in the rate of polymerization. The melting temperature and the crystallinity of the polymer significantly decreased with increasing polymerization temperature in the range 40–60°C.  相似文献   

13.
Summary: In this work, the free radical batch polymerization of methyl methacrylate (MMA) premixed with xylene as a solvent, in the presence of an initiator, 2,2-azoisobutyronitrile (AIBN), in the Taylor-Couette reactor was studied. We observed an unexpected influence of hydrodynamic process parameters, i.e. angular velocity ω, on the polymer conversion, molecular weight and viscosity of the produced polymer. The polymerization process seems to be activated by hydrodynamic process parameters. Hydrodynamic activation is a promoting effect of process parameters on polymer product properties. The hydrodynamic activation is found to depend on the reaction time and the angular velocity of the inner cylinder. In addition, our results highlight both the reaction kinetics and the hydrodynamics during the polymerization. The conversion exhibits a significant difference between tests with and without the angular velocity of the inner cylinder. The conversion and the molecular weight strongly increase with the increase of the angular velocity of the inner cylinder, whereas the viscosity is less strongly dependent. There is more increase with decreasing solvent concentration. The radial Reynolds number decreases with increasing conversion. The polymerization is faster with a low solvent concentration, and the molecular weight is higher compared to the case of high solvent concentration.  相似文献   

14.
UV光引发的丙烯酰胺反相乳液聚合   总被引:7,自引:0,他引:7  
报道了不透明丙烯酰胺反相乳液体系的UV光引发聚合新方法 .使用普通中压汞灯并辅以适当搅拌 ,UV光引发丙烯酰胺 水 煤油 Span80 +OP 10反相乳液聚合可在 2 0min左右完成 ,所得聚合物分子量达千万 ;聚合过程中不存在恒速期 ,扫描电镜未观察到聚合前后乳胶粒径有数量级的变化 ,表明聚合反应以单体液滴成核为主 .此外 ,考察了光引发剂类型及浓度、单体浓度、乳化剂用量、反应温度等对聚合反应的影响 ,结果表明不同光引发剂的引发活性为Irgacure 2 95 9>(ITX +EDAB) >BDK ,引发剂浓度增加 ,反应速度先增加而后降低 ,存在一最大值 ;单体浓度增加 ,反应速度加快 ,聚合物分子量提高 ;乳化剂用量增加 ,反应速度加快而分子量变化不明显 ;聚合表观活化能为 13 34kJ mol.  相似文献   

15.
甲基丙烯酸甲酯聚合动力学和分子量及分布的开放控制   总被引:1,自引:0,他引:1  
在甲基丙烯酸甲酯聚合过程中 ,凝胶效应会导致转化率在短时间内出现突变 ,这对工业反应器非常危险 ,同时也导致分子量剧增、分子量分布加宽 .为了使聚合反应速度、分子量及分布同时得到控制 ,提出 3个控制目标 ,即热荷分布指数、预定分子量及变化、分子量分布指数 .在甲基丙烯酸甲酯半间歇聚合动力学和分子量模型的基础上 ,通过单体、溶剂和链转移剂 3种物料的流量和加料方式的仿真计算 ,对动力学、分子量及分布进行开放控制 ,并进行优化 ,得到热荷分布指数和分子量分布指数分别小于 2 0和 2 2的控制策略 ,且分子量达到预定要求 .选择两种优化策略进行实验验证 ,结果与开放控制仿真结果一致  相似文献   

16.
环氧树脂水基分散体系的相反转乳化   总被引:26,自引:1,他引:25  
以聚乙二醇-邻苯二甲酸酐-环氧树脂E-44多元嵌段共聚体为乳化剂,将环氧树脂E-4乳化成水包油的稳定水基乳液。用乳液体系电导率和粘度的变化表征了相反转乳化过程。研究了乳化剂浓度、三元多嵌段共聚体中亲水嵌段分子量和乳化温度对相反转乳化过程的影响。实验结果表明,体系在较高乳化剂浓度(9.1%)下为完全相反转,在低乳化剂浓度(4.1%)下为不完全相反转。相反转时水与环氧树脂E-44的重量比值随乳化剂浓度  相似文献   

17.
18.
Excellent stability of water-in-oil emulsions could be obtained by partial crosslinking of the fatty chain in several polyglycerol fatty esters. Such products were capable of emulsifying and stabilizing up to 50 wt% water in vegetable oils at a level of 3-5% emulsifier per total emulsion weight. The corresponding non-crosslinked products require at least 20-25% emulsifier to give the sane level of stability, with much higher viscosity.

Degree of polymerization, molecular weight distribution, viscosity, dielectric constant and refractive index of the emulsifier were correlated to the emulsion stability. The most remarkable result is a clear correlation between the molecular weight of the emulsifier and emulsion stability; best emulsions were prepared with polymeric emulsifier with MW of Ca. 40000.  相似文献   

19.
The RITP-emulsion polymerization of styrene in the presence of molecular iodine has been successfully performed using potassium persulfate (KPS) as an initiator and 1-hexadecanesulfonate as an emulsifier under argon atmosphere at 80°C for 7 hrs in the absence of light. The effects of the iodine concentration, molar ratio between KPS and iodine, and solid contents on the molecular weight of polystyrene (PS) were studied. As the iodine concentration increased from 0.05 to 0.504 mmol under the fixed [KPS]/[I(2)] ratio at 4.5, the weight-average molecular weight of PS substantially decreased from 126,120 to 35,690 g/mol, the conversion increased from 85.0% to 95.2%, and the weight-average particle diameter decreased from 159 to 103 nm. In addition, as the ratio of [KPS]/[I(2)] increased from 0.5 to 6.0 at the fixed [I(2)] of 0.504 mmol, the weight-average molecular weight of PS decreased from 72,170 to 30,640 g/mol with high conversion between 81.7% and 96.5%. Moreover, when the styrene solid content increased from 10 to 40 wt.% at the fixed [KPS]/[I(2)] ratio of 4.5, the weight-average molecular weight of PS varied between 33,500 and 37,200 g/mol, the conversion varied between 94.9% and 89.7% and the weight-average diameter varied from 122 to 205 nm. Thus, the control of molecular weight of PS less than 100,000g/mol with high conversion (95%) and particle stability of up to 40 wt.% solid content were easily achieved through the usage of iodine with suitable ratio of [KPS]/[I(2)] in the RITP-emulsion polymerization technique, which is of great industrial importance.  相似文献   

20.
In this paper, a new water-soluble initiator system, 2-bromopropane/CuSO4/sodium ascorbate, was used as the initiator for emulsion polymerization. Radical emulsion polymerization of styrene was successfully carried out at 80 °C by using sodium dodecylbenzenesulfonate as the emulsifier. The 2-bromopropane/CuSO4/sodium ascorbate-initiated emulsion polymerization shows the controlled free-radical polymerization features with linear growth of molecular weight. Polystyrene with a relatively high molecular weight and a narrow molecular weight distribution can be synthesized by this method. On the other hand, stable polystyrene latex can be obtained, and the size of the polystyrene latex increased with the increase in monomer conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号