首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water vapor adsorption and heats of water wetting are studied for hydrophilic quartz, hydrophobic-hydrophilic talc, and hydrophobized Silochrom samples. Water contact angles on the materials under examination are found. The surface thermodynamic parameters of the sorbents are calculated from the data obtained. It is shown that boundary water layers on hydrophilic quartz surface are ordered to a higher extent, while those on hydrophobic basal surfaces of talc particles and hydrophobic surfaces of modified Silochrom samples are ordered to a lower extent relative to liquid water. An empirical equation relating the surface pressure of water films adsorbed on hydrophilic high-energy surfaces with the surface free energy of the latter is proposed. The values of surface free energy are estimated from this equation for a number of important hydrophilic adsorbents.  相似文献   

2.
This research was directed at understanding cationic surfactant adsorption phenomena on wet-ground natural quartz, mainly with dodecylpyridinium chloride as the model surfactant. How these surfactant ions adsorb at the interface was delineated through measurements of adsorption isotherms, zeta potentials, suspension stability, contact angles, induction times, and flotation response. Hydrocarbon chain association of adsorbed surfactant ions (or self-association) leads to four distinct adsorption regions as the concentration of surfactant is increased in solution. The same four regions manifest themselves in the behavior of all of the interfacial processes studied. At low concentrations, adsorption is controlled primarily by electrostatic interactions, but when the adsorbed surfactant ions begin to associate into hemimicelles at the surface, hydrophobic chain interactions control the adsorption process. The results of experiments with alkylpyridinium chlorides of 12, 14 and 16 carbon atoms can be normalized in terms of their CMCs, which clearly show that surface aggregation phenomena are driven by the same hydrophobic interactions that lead to micelle formation in bulk solution.  相似文献   

3.
4.
A model for the adsorption of ionic surfactants on oppositely charged solid surfaces of uniform charge density is developed. The model is based on the assumption that, on the solid surface, adsorbed surfactant monomers, monolayered and bilayered surfactant aggregates of different sizes and specifically adsorbing ions of added electrolyte constitute a mixture of hard discs. It means that only excluded area interactions between the surface discs are taken into account. To avoid a rapid two-dimensional condensation of the adsorbed surfactant the potential energy per molecule in the surface aggregates, which is a sum of chemical and electrostatic interactions, is assumed to decrease linearly with the increasing aggregate size. The electrostatic interactions of ionic species with the charged solid surface are described in terms of the Guy-Chapman theory of the double layer formation. The appropriate equations for adsorption isotherms of surfactant and electrolyte ions are derived and used to predict the experimental adsorption isotherms of DTAB on the precipitated silica at two different salt concentrations in the aqueous solution, On the basis of the obtained results the evolution of the adsorbed phase structure and the charge of silica particles with an increasing surface coverage is discussed.  相似文献   

5.
以zeta电位法研究了季铵Gemini表面活性剂亚甲基-α, ω-双(十二烷基二甲基溴化铵) (12-s-12, s=2, 6)在水溶液中修饰气相二氧化硅(F-SiO2)粒子。这些粒子随表面活性剂浓度C增加经历了表面从原先的亲水到疏水再重新亲水的改变,其中疏水粒子可以自发吸附在气泡液膜中,从而很好地稳定泡沫。重新亲水的粒子脱附出液膜,仅留下表面活性剂稳定气泡。强的液膜弹性对应于稳定的泡沫。联接链长度影响了Gemini在F-SiO2粒子表面的吸附,因而也影响了液膜的弹性和对泡沫的稳定。超短s=2联接链的12-2-12由于反离子解离不完全而带有较少的正电荷,在粒子表面的初始吸附弱于12-6-12,但因此减少了吸附分子头基间的静电排斥,可以形成更致密的吸附层。由于12-2-12本身比12-6-12具有更强的界面吸附能力,F-SiO2粒子和12-2-12的协同作用可以更好地稳定泡沫体系。  相似文献   

6.
While individual water molecules adsorb strongly on a talc surface (hydrophilic behavior), a droplet of water beads up on the same surface (hydrophobic behavior). To rationalize this dichotomy, we investigated the influence of the microscopic structure of the surface and the strength of adhesive (surface-water) interactions on surface hydrophobicity. We have shown that at low relative humidity, the competition between adhesion and the favorable entropy of being in the vapor phase determines the surface coverage. However, at saturation, it is the competition between adhesion and cohesion (water-water interactions) that determines the surface hydrophobicity. The adhesive interactions in talc are strong enough to overcome the unfavorable entropy, and water adsorbs strongly on talc surfaces. However, they are too weak to overcome the cohesive interactions, and water thus beads up on talc surfaces. Surprisingly, even talc-like surfaces that are highly adhesive do not fully wet at saturation. Instead, a water droplet forms on top of a strongly adsorbed monolayer of water. Our results imply that the interior of hydrophobic zeolites suspended in water may contain adsorbed water molecules at pressures much lower than the intrusion pressure.  相似文献   

7.
Carboxymethyl cellulose (CMC), in solution and adsorbed on the surface of talc, has been studied with ATR FTIR spectroscopy as a function of the solution pH. The solution spectra enable the calculation of the extent of ionization of the polymer (due to protonation and deprotonation of the carboxyl group) at various pH values, yielding a value of 3.50 for the pK(app)(1/2) (pH at which half of all carboxyl groups are ionized) in a simple electrolyte solution and a value of 3.37 for the pK(app)(1/2) in solutions containing magnesium ions (3.33 x 10(-4) M). The spectra of the adsorbed layer reveal that CMC interacts with the talc surface through a chemical complexation mechanism, via the carboxyl groups substituted on the polymer backbone. The binding mechanism is active at all pH values down to pH 2 and up to pH 11. The adsorbed layer spectra reveal that protonation and deprotonation of the polymer are affected by adsorption, with an increase in the pK(app)(1/2) to a value of 4.80. Spectra of the adsorbed polymer were also acquired as a function of the adsorption time. Adsorption kinetic data reveal that the polymer most likely has two different interactions with the talc surface, with a stronger interaction with the talc edge through chemical complexation and a weaker interaction with the talc basal plane presumably through the hydrophobic interaction.  相似文献   

8.
An initial molecular dynamics simulation study regarding interfacial phenomena at selected naturally hydrophobic surfaces is reported. Simulation results show that, due to the natural hydrophobicity of graphite and talc basal planes, the cationic surfactant dodecyltrimethylammonium bromide preferentially adsorbs at these surfaces through hydrophobic interactions. When a model dextrin molecule is considered, the simulation results suggest that the hydrophobic interaction between the naturally hydrophobic surfaces of graphite, talc basal plane, and sulfur and the hydrophobic moieties (C-H and methylene groups) in the dextrin molecule plays a significant role in dextrin adsorption at these surfaces. The hydroxyl group in the dextrin molecule also contributes to its adsorption at the talc basal plane surface. In contrast, dextrin was not found to adsorb at talc edge surfaces.  相似文献   

9.
Monte Carlo study of surfactant adsorption on heterogeneous solid surfaces   总被引:1,自引:0,他引:1  
The equilibrium between free surfactant molecules in aqueous solution and adsorbed layers on structured solid surfaces is investigated by lattice Monte Carlo simulation. The solid surfaces are composed of hydrophilic and hydrophobic surface regions. The structures of the surfactant adsorbate above isolated surface domains and domains arranged in a checkerboard-like pattern are characterized. At the domain boundary, the adsorption layers display a different behavior for hydrophilic and hydrophobic surface domains. For the checkerboard-like surfaces, additional adsorption takes place at the boundaries between surface domains.  相似文献   

10.
The hydrophobicity of the talc basal surface is considered in the framework of the concept which relates the properties of layered silicates and their dispersions to the differences between the characteristics of the basal and side surfaces of their particles. The ab initio calculations of the energetics and geometry of the microclusters formed by water molecules adsorbed on the active sites (oxygen ions) located at the perfect basal surface of talc are performed. It is shown that the typical property of the hydrophobic surface is the adsorption of single molecules of water on extremely scarce or weak active sites of the surface, which act as secondary adsorption sites, and subsequent adsorption of water molecules on these secondary sites which results in the formation of ring-like structures. The heat of adsorption on this surface is shown to be essentially lower than the water condensation heat, which is also indicative of the hydrophobicity of the basal surface of talc.  相似文献   

11.
Nonionic surfactants such as Tween 80 are used commercially to minimize protein loss through adsorption and aggregation and preserve native structure and activity. However, the specific mechanisms underlying Tween action in this context are not well understood. Here, we describe the interaction of the well-characterized, globular protein lysozyme with Tween 80 at solid–water interfaces. Hydrophilic and silanized, hydrophobic silica surfaces were used as substrates for protein and surfactant adsorption, which was monitored in situ, with ellipsometry. The method of lysozyme and Tween introduction to the surfaces was varied in order to identify the separate roles of protein, surfactant, and the protein–surfactant complex in the observed interfacial behavior. At the hydrophobic surface, the presence of Tween in the protein solution resulted in a reduction in amount of protein adsorbed, while lysozyme adsorption at the hydrophilic surface was entirely unaffected by the presence of Tween. In addition, while a Tween pre-coat prevented lysozyme adsorption on the hydrophobic surface, such a pre-coat was completely ineffective in reducing adsorption on the hydrophilic surface. These observations were attributed to surface-dependent differences in Tween binding strength and emphasize the importance of the direct interaction between surfactant and solid surface relative to surfactant–protein association in solution in the modulation of protein adsorption by Tween 80.  相似文献   

12.
赵剑曦  戴闽光 《化学学报》1999,57(12):1298-1305
实验测得C~1~2TAB在PS胶乳粒子表面的吸附等温线呈L型的二阶段吸附特征,这表明初始的C~1~2TA^+离子是将其季铵正电性头基吸引在PS链的负电性硫酸根端基上,并将碳氢链通过疏水相互作用吸附在PS链上。结合光子相关谱测得胶乳粒子流体力学半径R~H的变化,表明第I阶段围绕着这些初始吸附位的聚集吸附,产生平均聚集数为4.0的松散小聚集体,此时对应的浓度c/cmc=0.32是文献通常所指的临界表面胶团浓度csmc。其后的进一步聚集吸附最终生成了附着在PS链端基处且平均聚集数为19.5的球形吸附胶团。这一饱和吸附的结果增加了胶乳粒子在水溶液中的分散稳定性。  相似文献   

13.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

14.
The adsorption of polymers, copolymers, surfactants, and biopolymers is often used to engineer surfaces. Towards improving our understanding of polymer adsorption we report simulation results for the adsorption of model copolymers, resembling surfactants, on nanoscale patterned hydrophobic surfaces at infinitely dilute concentrations. The surfactants are composed by a hydrophobic tail and a hydrophilic head. Surfactant adsorption on the hydrophobic surface occurs in the tail-down configuration in which the tail segments are in contact with the surface. We investigate how the presence of a solid hard mask, used to create the nanoscale pattern on the underlying hydrophobic surface, affects the surfactant adsorption. We find that surfactant adsorption on the underlying hydrophobic surface is prevented when the characteristic dimensions of the solid hard mask are less than twice the radius of gyration. We also show that details about mask-surfactant head effective interactions have the potential to alter the characteristics of adsorption. When the mask repels the head segments, the surfactants hardly adsorb on the underlying hydrophobic surface. When the mask strongly attracts the surfactant heads, the surfactants may preferentially adsorb on the mask rather than on the underlying hydrophobic surface. Under these latter circumstances the adsorbed surfactants in some cases assume a head-down configuration in which the head segments are in contact with the mask and the tail segments extend towards the bulk solution. We explain our results in terms of enthalpy and entropy of adsorption and discuss practical implications.  相似文献   

15.
Stain patterns formed by drying up of droplets of polymer latex dispersion on hydrophilic and hydrophobic surfaces were examined in light of the mechanism of particle adsorption in evaporating droplets. On hydrophilic surfaces, the volume of droplets decreased with time, keeping the initial outline of contact area, and circular stain patterns were formed after the dry-up of droplets. By the microscopic observation of particles in the droplets, it was found that a large portion of the particles were forced to adsorb on the outline of the contact area where a microscopic thin water layer was formed because of hydrophilicity of the surface. On hydrophobic surfaces, on the other hand, the contact area of droplets decreased as evaporation proceeded, while no particle was adsorbed on the surface at the early stages. The particles in the droplets started to aggregate when the concentration of particles reached a critical value, and the aggregates adsorbed on the surface forming tiny spots after the dry-up. Time evolutions of contact angle, contact area and volume of the droplets were analyzed in light of differences in the adsorption mechanisms between hydrophilic and hydrophobic surfaces. Received: 14 January 1998 Accepted: 1 May 1998  相似文献   

16.
Interactions between proteins and clays perturb biological activity in ecosystems, particularly soil extracellular enzyme activity. The pH dependence of hydrophobic, hydrophilic, and electrostatic interactions on the adsorption of bovine serum albumin (BSA) is studied. BSA secondary structures and hydration are revealed from computation of the Amide I and II FTIR absorption profiles. The influence of ionization of Asp, Glu, and His side chains on the adsorption processes is deduced from correlation between p(2)H dependent carboxylic/carboxylate ratio and Amide band profiles. We quantify p(2)H dependent internal and external structural unfolding for BSA adsorbed on montmorillonite, which is an electronegative phyllosilicate. Adsorption on talc, a hydrophobic surface, is less denaturing. The results emphasize the importance of electrostatic interactions in both adsorption processes. In the first case, charged side chains directly influence BSA adsorption that generate the structural transition. In the second case, the forces that attract hydrophobic side chains toward the protein-clay interface are large enough to distort peripheral amphiphilic helical domains. The resulting local unfolding displaces enough internal ionized side chains to prevent them from establishing salt bridges as for BSA native structure in solution. On montmorillonite, a particular feature is a higher protonation of the Asp and Glu side chains of the adsorbed BSA than in solution, which decreases coulombic repulsion. Copyright 2000 Academic Press.  相似文献   

17.
The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations < or = 0.01 M. At 0.1 M salt poor stability results despite substantial zeta potential values. Three mechanisms for SDBS adsorption have been identified. When anionic SDBS monomers either adsorb by electrostatic interactions with the few positive surface sites at high pH or adsorb onto like charged negative surface sites due to dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.  相似文献   

18.
The adsorption of benzethonium chloride from aqueous solutions on the surface of finely dispersed particles of aluminum oxide, titanium dioxide, and zirconium dioxide is investigated. The ratio of the amount of adsorbed benzethonium chloride molecules to the amount of surface hydroxyl groups as potential adsorption sites is proposed to be used for characterizing the structure of adsorption layers. It is shown that the formation of supramolecular structures of benzethonium chloride molecules on solid surfaces begins when its concentrations in suspensions is significantly lower than the critical micellization concentration. It is established that benzethonium chloride is adsorbed via simultaneous interaction of the surfactant molecules with the surface hydroxyl groups and hydrophobic interaction of their hydrocarbon tails; the amounts of molecules adsorbed as a result of these interactions depend on both benzethonium chloride concentration in a solution and the density of the hydroxyl groups on an oxide surface.  相似文献   

19.
We report the areal growth kinetics of fibrinogen adsorbed on model hydrophobic and hydrophilic surfaces measured via an adsorption probe method. This approach exploits the adsorption of probe molecules to determine the evolution of fibrinogen test molecules under conditions where the fibrinogen test molecules adsorb at relatively dilute surface conditions, minimizing interactions between them. It is found that fibrinogen test molecules spread from an average initial footprint of 100 nm2 to a final footprint near 500 nm2 per molecule on the hydrophobic surface, with a single-exponential decay of 1735 s. On a hydrophilic monolayer, the area increases from 100 to 160 nm2 with a characteristic time of 6740 s. These results demonstrate the power of the adsorption probe approach and comprise the first measurements of the averaged area relaxations of adsorbed proteins. The observation of single-exponential dynamics is remarkable, given the extensive relaxation on the hydrophobic surface, which must involve fibrinogen denaturing.  相似文献   

20.
In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号