首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of molecular monolayers formed at the interface between atomically flat surfaces and a solution of free-base meso-tetradodecylporphyrins (H2Ps) was examined by scanning tunneling microscopy (STM) at the liquid/solid interface. On the surface of graphite (HOPG), H2Ps form a well-ordered monolayer characterized by an oblique unit cell. On Au(111), H2Ps form a self-organized monolayer comprised of two distinct domain types. In both types of domains, the density of the porphyrin cores is increased in comparison to the arrangement observed on HOPG. Also, high-resolution STM images reveal that, in contrast to what is observed on HOPG, physisorption on Au(111) induces a distortion of the porphyrin macrocycle out of planarity. By using X-ray photoelectron spectroscopy, we demonstrate that this is likely to be due to the coordination of the lone pairs of the iminic (-C=N-) nitrogen atoms of the porphyrin macrocycle to Au(111).  相似文献   

2.
Anthracene Diels Alder adducts (DAa) bearing two long side chains (H-(CH2)22O(CH2)6OCH2-) at the 1- and 5-positions form self-assembled monolayers (SAMs) at the phenyloctane - highly oriented pyrolytic graphite (HOPG) interface. The long DAa side chains promote strong physisorption of the monolayer to HOPG and maintain the monolayer morphology upon rinsing or incubation in ethanol and air-drying of the substrate. Incorporating a carboxylic acid group on the DAa core enables capture of 1-4 nm diameter gold nanoparticles (AuNPs) provided (i) the monolayer containing DAa-carboxylic acids is treated with Cu2+ ions and (ii) the organic coating on the AuNP contains carboxylic acids (11-mercaptoundecanoic acid, MUA-AuNP). AuNP capture by the monolayer proceeds with formation of Cu2+ - carboxylate coordination complexes. The captured AuNP appear as mono- and multi-layered clusters at high coverage on HOPG. The surface density of the captured AuNPs can be adjusted from AuNP multi-layers to isolated AuNPs by varying incubation times, MUA-AuNP concentration, the number density of carboxylic acids in the monolayer, the number of MUA per AuNP, and post-incubation treatments.  相似文献   

3.
Immobilization of protein molecules on solid supports or surfaces in a controlled fashion is an important task for protein analysis at the solid/solution or solid/gas interface and biosensor fabrication. In this paper, the structure and biological activities of metallothionein (MT) layers immobilized on highly oriented pyrolytic graphite (HOPG) surfaces by means of two different strategies based on unspecific adsorption/chemisorption (MT‐HOPG system) and covalent binding (MT‐modified HOPG system) were studied respectively. The MT layers obtained by covalent binding to a previously functionalized HOPG surface are smooth and show a close‐packed ordered monolayer in contrast to those obtained by direct adsorption of the protein on substrate, which are disordered and relatively rough. Both adsorbed proteins exhibit reversible electron transfer at 0.25 V (Ag/AgCl) after immersion in CuSO4 solution, whereas redox current of MT‐modified HOPG system is four times larger than that of MT‐HOPG system. Moreover, the MTs adsorbed on bare HOPG surfaces are obviously denatured. All the above results show that covalent binding strategies lead to high structural regularity and mechanical stability of the adsorbed protein molecules with a maintained biological activity, which is prospective for applications in immobilizing MT on a transducer for biosensor design. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Stimulus control over 2D multicomponent molecular ordering on surfaces is a key technique for realizing advanced materials with stimuli‐responsive surface properties. The formation of 2D molecular ordering along with photoisomerization was monitored by scanning tunneling microscopy at the octanoic acid/highly oriented pyrolytic graphite interface for a synthesized amide‐containing diarylethene, which underwent photoisomerization between the open‐ and closed‐ring isomers and also a side‐reaction to give the annulated isomer. The nucleation (Kn) and elongation (Ke) equilibrium constants were determined by analysis of the concentration dependence of the surface coverage by using a cooperative model at the liquid/solid interface. It was found that the annulated isomer has a very large equilibrium constant, which explains the predominantly observed ordering of the annulated isomer. It was also found that the presence of the closed‐ring isomer induces cooperativity into the formation of molecular ordering composed of the open‐ring isomer. A quantitative analysis of the formation of ordering by using the cooperative model has provided a new view of the formation of 2D multicomponent molecular ordering.  相似文献   

5.
《Supramolecular Science》1996,3(1-3):13-18
Hydrophobic helical peptides having alternating hydrophobic amino acid and Aib in the sequence were synthesized to construct supramolecular systems. Three types of supramolecular systems were constructed by the peptides and the derivatives in different environments. First, the dispersion of TFA · H-(Ala-Aib)8-OBzl in water was studied by dynamic light scattering, which suggests the formation of a vesicular structure with an average diameter of 76 nm. We call the peptide assembly in water “peptosome”. Second, Boc-Ser(Ant)-(Ala-Aib)8-OMe spanned the phospholipid bilayer membrane and formed a helix-bundle structure. The bundle structure was supported by ion-channel formation in the membrane. Third, Boc-(Ala-Aib)8-OMe and Boc-(Leu-Aib)8-OBzl formed a two-dimensional crystal at the air-water interface. Boc-(Ala-Aib)12-OBzl also formed a monolayer in a solid state at the air-water interface, but the helix orientation was perpendicular to the interface, which presents a contrast to the parallel orientation of the former hexadecapeptides.  相似文献   

6.
The supramolecular assembly of bis[3, 4, 12, 13, 21, 22, 30, 31-octa(dodecylthio)-2, 3-naphthalocyaninato] erbium complex (Er[Nc(SC12H25)8]2) was fabricated at the air/water interface by Langmuir monolayer technique. Surface pressure-area isotherm indicates that stable monolayer is formed. The monolayer morphology on mica was investigated by atomic force microscopy (AFM). Columnar domains of ca. 100 nm X (20–30) nm appearing in the micrograph have ordered orientation. Polarized UV-vis spectra and small-angle X-ray diffraction pattern show that the macrocycles tilt in the monolayer. The orientation angle of the naphthalocyanine ring with respect to the substrate was found to be ca. 54°. Each monolayer is ca. 3.53 nm thick. The columnar domain comprises 4–6 rows of columnar supramolecular assemblies where the molecules stack face-to-face.  相似文献   

7.
A general strategy for simultaneously generating surface‐based supramolecular architectures on flat sp2‐hybridized carbon supports and independently exposing on demand off‐plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D Janus tectons that form surface‐confined supramolecular adlayers in which it is possible to simultaneously steer the 2D self‐assembly on flat C(sp2)‐based substrates and tailor the external interface above the substrate by exposure to a wide variety of small terminal chemical groups and functional moieties. This approach is validated throughout by scanning tunneling microscopy (STM) at the liquid–solid interface and molecular mechanics modeling studies. The successful self‐assembly on graphene, together with the possibility to transfer the graphene monolayer onto various substrates, should considerably extend the application of our functionalization strategy.  相似文献   

8.
The supramolecular assembly of bis[3, 4, 12, 13, 21, 22, 30, 31-octa(dodecylthio)-2, 3-naphthalocyaninato] erbium complex (Er[Nc(SC12H25)8]2) was fabricated at the air/water interface by Langmuir monolayer technique. Surface pressure-area isotherm indicates that stable monolayer is formed. The monolayer morphology on mica was investigated by atomic force microscopy (AFM). Columnar domains of ca. 100 nm ×(20-30) nm appearing in the micrograph have ordered orientation. Polarized UV-vis spectra and small-angle X-ray diffraction pattern show that the macrocycles tilt in the monolayer. The orientation angle of the naphthalocyanine ring with respect to the substrate was found to be ca. 54°. Each monolayer is ca. 3.53 nm thick. The columnar domain comprises 4-6 rows of columnar supramolecular assemblies where the molecules stack face-to-face.  相似文献   

9.
The construction of a spatially defined assembly of molecular building blocks, especially in the vertical direction, presents a great challenge for surface molecular engineering. Herein, we demonstrate that an electric field applied between an STM tip and a substrate triggered the formation of a bilayer structure at the solid–liquid interface. In contrast to the typical high electric‐field strength (109 V m?1) used to induce structural transitions in supramolecular assemblies, a mild electric field (105 V m?1) triggered the formation of a bilayer structure of a polar molecule on top of a nanoporous network of trimesic acid on graphite. The bilayer structure was transformed into a monolayer kagome structure by changing the polarity of the electric field. This tailored formation and large‐scale phase transformation of a molecular assembly in the perpendicular dimension by a mild electric field opens perspectives for the manipulation of surface molecular nanoarchitectures.  相似文献   

10.
Novel supramolecular coatings that make use of low-molecular weight ditopic monomers with guanine end groups are studied using fluid tapping AFM. These molecules assemble on highly oriented pyrolytic graphite (HOPG) from aqueous solutions to form nanosized banding structures whose sizes can be systematically tuned at the nanoscale by tailoring the molecular structure of the monomers. The nature of the self-assembly in these systems has been studied through a combination of the self-assembly of structural derivatives and molecular modeling. Furthermore, we introduce the concept of using these molecular assemblies as scaffolds to organize functional groups on the surface. As a first demonstration of this concept, scaffold monomers that contain a monomethyl triethyleneglycol branch were used to organize these "functional" units on a HOPG surface. These supramolecular grafted assemblies have been shown to be stable at biologically relevant temperatures and even have the ability to significantly reduce static platelet adhesion.  相似文献   

11.
Zhen Zhang  Yuan Guo 《中国化学》2012,30(7):1663-1666
Langmuir monolayer and Gibbs layer exhibit surface‐active properties and it can be used as simple model systems to investigate the physicochemical properties of biological membranes. In this report, we presented the OH stretching vibration of H2O in the 4′′‐n‐pentyl‐4‐cyano‐p‐terphenyl (5CT), nonadecanenitrile (C18CN) Langmuir monolayer and compared them with CH3CN Gibbs layer at the air/water interface with polarization SFG‐VS. This study demonstrated that the hydrogen bond network is different in the Langmuir monolayer of 5CT, C18CN from CH3CN Gibbs layer at the air/water interface which showed two different water structures on the different surface layer. The results provided a deeper insight into understanding the hydrogen bond on the interfaces.  相似文献   

12.
Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.  相似文献   

13.
Symmetry breaking in the self-assembled monolayer (SAM) structure of 1-octadecanol on highly ordered pyrolytic graphite (HOPG) is observed. Due to the slight mismatch of the octadecanol molecule with the graphite lattice, the alkane chain undergoes distortion upon adsorption on the surface. The asymmetric distortion of the octadecanol SAM unit cell pair is observed by scanning tunneling microscopy at the liquid/solid interface. Asymmetric distortion is due to the requirement for planarity of the hydrogen bond connecting the two octadecanol molecules in the chevron-shaped unit cell. This very simple structure provides the first example of an adsorption-induced distortion to form a supramolecular asymmetric structure, which is formed by achiral molecules adsorbed on an achiral surface. What makes this system interesting and different from other examples of adsorption-induced chirality is that the adsorbate itself undergoes asymmetric distortion due to the existence of the substrate and the adsorbate conformation is different from the molecule in solution.  相似文献   

14.
A general thermodynamic treatment is given for the protolytic equilibria in an insoluble monolayer, containing surfactant molecules with n ionizable protons and able to accept m more protons, and being spread at the liquid/gas interface. The correlation between the pH of the subphase liquid and the collapse pressure of the monolayer is discussed. By using the approximation of perfect solutions and of binary surface systems (protonated and deprotonated molecular species of the surfactant) several methods are proposed for deriving apparent surface acidity constants from experimental collapse pressure vs pH curves, in the case of both miscible in monolayer miscible in collapsed bulk phase and miscible in monolayer immiscible in collapsed bulk phase, type systems. Some of these methods are based on a complete perfect solution approximation (CA) taking into account the molar fraction of the subphase liquid in the monolayer and the others use “surfactant” approximation (SA), neglecting this molar fraction. The methods proposed are tested on monolayers of carotenoid pigments spread at aqueous solution/air interfaces. Results obtained by the different methods are rather close to each other, but the approximation CA is better than SA. The apparent surface acidity constants of different carotenoids are compared with each other and discussed in terms of molecular structure and electronic effects.  相似文献   

15.
A new star-shaped molecule StOF-Br_3 containing oligofluorenes and halogen atoms(Bromine) has been synthesized and studied by Scanning Tunneling Microscopy(STM) at the highly oriented pyrolytic graphite(HOPG) surface.We have obtained the high-resolution self-assembled STM images,from which the highly ordered and closely packed non-porous arrangements of the StOF-Br_3 molecular selfassemblies at the heptanoic acid/HOPG surface could be observed.The molecular models and selfassembled StOF-Br_3 architectures have been given in the following text.Besides,we have also figured out the surface free energy by the density functional theory(DFT) calculation,which proved that the halogen...halogen interaction was strong enough to stabilize the ordered molecular self-assemblies.This work verifies the existence of bromine...bromine interactions,and meanwhile provides a kind of effective approach for quickly building ordered molecular nanoarchitectures with large areas and different geometries.  相似文献   

16.
Ions of gold monomer and clusters emitted from a liquid metal ion source were mass-selected, and deposited on cleaved HOPG (highly oriented pyrolytic graphite) surfaces and on amorphous carbon thin films at room temperature with the impinging energy E i from 0 to 500 eV. The coverage of deposited ions were 1/100 and 1/1000 monolayers on HOPG surfaces and 1/3 monolayers on carbon films. Scanning tunneling microscopy of the HOPG surfaces deposited with low impinging energy (E i<50 eV) revealed that large clusters with diameters ranging from 2 to 5 nm and height of 1–2 layers were present instead of isolated monomers and original clusters. When E i was higher than 100 eV, HOPG surfaces were damaged and only bumpy surfaces were observed by STM. Transmission electron microscopy of Au+-deposited carbon films showed the formation of clusters with diameter 0.5–20 nm, depending on the E i and the time elapsed after deposition.  相似文献   

17.
The supramolecular packing mode of physisorbed monolayers built up by chiral isophthalic acid derivatives and coadsorbed achiral solvent molecules was imaged at the liquid/graphite interface with scanning tunneling microscopy (STM). The picture on the right shows the submolecularly resolved STM image of an enantiomorphous domain composed of the R enantiomer of the isophthalic acid derivative studied and 1-heptanol molecules; the latter express the chirality of the monolayer. Upon adsorption a racemic mixture is separated into enantiomorphous domains.  相似文献   

18.
Functional groups in the molecule play an important role in the molecular o rganization process.To reveal the influence of functional groups on the self-assembly at interface,herein,the self-assembly structures of three liquid crystal molecules,which only differ in the functional groups,are explicitly characterized by using scanning tunneling microscopy(STM).The high-resolution STM images demonstrate the difference between the supramolecular assembly structures of three liquid crystal molecules,which attribute to the hydrogen bonding interaction and π-π stacking interaction between different functional groups.The density functional theory(DFT) results also confirm the influence of these functional groups on the self-assemblies.The effort on the self-assembly of liquid crystal molecules at interface could enhance the understanding of the supramolecular assembly mechanism and benefit the further application of liquid crystals.  相似文献   

19.
The morphologies of monolayers containing Eu(TTA)3Phen (TTA=thenoyltrifluoroace-tone, Phen = 1, 10-phenanthroline) were studied at the air/liquid interface on different subphases by fluorescence microscopy (FM). The composite subphase was the basic premise for the stable existence of the rare earth compound at air/liquid interface. The process that rare earth compound phase changes from liquid expanded state to liquid condensed state corresponded to a plateau in the π-A isotherm. In the pure Eu(TTA)3Phen monolayer, rod domains of Eu(TTA)3Phen formed and packed with no order. In the mixed monolayers with stearic acid (SA), phase transition of SA occurred first and formed domains with an electric gradient field, which induced the rare earth compound to form luminescent ring domains. Influence of intermolecular interaction on the self-organized microstructure was revealed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号