首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In photodynamic therapy (PDT), the level of reactive oxygen species (ROS) produced in the cell directly determines the therapeutic effect. Improvement in ROS concentration can be realized by reducing the glutathione (GSH) level or increasing the amount of photosensitizer. However, excessive amounts photosensitizer may cause side effects. Therefore, the development of photosensitizers that reduce GSH levels through synergistically improving ROS concentration in order to strengthen the efficacy of PDT for tumor is important. We report a nano‐metal–organic framework (CuII‐metalated nano‐MOF {CuL‐[AlOH]2}n (MOF‐2, H6L=mesotetrakis(4‐carboxylphenyl)porphyrin)) based on CuII as the active center for PDT. This MOF‐2 is readily taken up by breast cancer cells, and high levels of ROS are generated under light irradiation. Meanwhile, intracellular GSH is considerably decreased owing to absorption on MOF‐2; this synergistically increases ROS concentration and accelerates apoptosis, thereby enhancing the effect of PDT. Notably, based on the direct adsorption of GSH, MOF‐2 showed a comparable effect with the commercial antitumor drug camptothecin in a mouse breast cancer model. This work provides strong evidence for MOF‐2 as a promising new PDT candidate and anticancer drug.  相似文献   

2.
Recently, increased attention has been focused on endoscopic disinfection after outbreaks of drug‐resistant infections associated with gastrointestinal endoscopy. The aims of this study were to investigate the bactericidal efficacy of methylene blue (MB)‐based photodynamic therapy (PDT) on Pseudomonas aeruginosa (P. aeruginosa), which is the major cause of drug‐resistant postendoscopy outbreak, and to assess the synergistic effects of hydrogen peroxide addition to MB‐based PDT on biofilms. In planktonic state of P. aeruginosa, the maximum decrease was 3 log10 and 5.5 log10 at 20 and 30 J cm?2, respectively, following MB‐based PDT. However, the maximum reduction of colony forming unit (CFU) was decreased by 2.5 log10 and 3 log10 irradiation on biofilms. The biofilm formation was significantly inhibited upon irradiation with MB‐based PDT. When the biofilm state of P. aeruginosa was treated with MB‐based PDT with hydrogen peroxide, the CFU was significantly decreased by 6 log10 after 20 J cm?2, by 7 log10 after 30 J cm?2 irradiation, suggesting significantly higher efficacy than MB‐based PDT alone. The implementation of the combination of hydrogen peroxide with MB‐based PDT through working channels might be appropriate for preventing early colonization and biofilm formation in the endoscope and postendoscopy outbreak.  相似文献   

3.
Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.  相似文献   

4.
Mounting evidence over the past 20 years suggests that photodynamic therapy (PDT), an anticancer modality known mostly as a local treatment, has the capacity to invoke a systemic antitumor immune response, leading to protection against tumor recurrence. For aggressive cancers such as melanoma, where chemotherapy and radiotherapy are ineffective, immunomodulating PDT as an adjuvant to surgery is of interest. Towards the development of specialized photosensitizers (PSs) for treating pigmented melanomas, nine new near-infrared (NIR) absorbing PSs based on a Ru(ii) tris-heteroleptic scaffold [Ru(NNN)(NN)(L)]Cln, were explored. Compounds 2, 6, and 9 exhibited high potency toward melanoma cells, with visible EC50 values as low as 0.292–0.602 μM and PIs as high as 156–360. Single-micromolar phototoxicity was obtained with NIR-light (733 nm) with PIs up to 71. The common feature of these lead NIR PSs was an accessible low-energy triplet intraligand (3IL) excited state for high singlet oxygen (1O2) quantum yields (69–93%), which was only possible when the photosensitizing 3IL states were lower in energy than the lowest triplet metal-to-ligand charge transfer (3MLCT) excited states that typically govern Ru(ii) polypyridyl photophysics. PDT treatment with 2 elicited a pro-inflammatory response alongside immunogenic cell death in mouse B16F10 melanoma cells and proved safe for in vivo administration (maximum tolerated dose = 50 mg kg−1). Female and male mice vaccinated with B16F10 cells that were PDT-treated with 2 and challenged with live B16F10 cells exhibited 80 and 55% protection from tumor growth, respectively, leading to significantly improved survival and excellent hazard ratios of ≤0.2.

Ru(ii) photosensitizers (PSs) destroy aggressive melanoma cells, triggering an immune response that leads to protection against tumor challenge and mouse survival.  相似文献   

5.
Reactive oxygen species (ROS)-induced apoptosis is a widely practiced strategy for cancer therapy. Although photodynamic therapy (PDT) takes advantage of the spatial–temporal control of ROS generation, the meticulous participation of light, photosensitizer, and oxygen greatly hinders the broad application of PDT as a first-line cancer treatment option. An activatable system has been developed that enables tumor-specific singlet oxygen (1O2) generation for cancer therapy, based on a Fenton-like reaction between linoleic acid hydroperoxide (LAHP) tethered on iron oxide nanoparticles (IO NPs) and the released iron(II) ions from IO NPs under acidic-pH condition. The IO-LAHP NPs are able to induce efficient apoptotic cancer cell death both in vitro and in vivo through tumor-specific 1O2 generation and subsequent ROS mediated mechanism. This study demonstrates the effectiveness of modulating biochemical reactions as a ROS source to exert cancer death.  相似文献   

6.
In this paper, a self‐delivery chimeric peptide PpIX‐PEG8‐KVPRNQDWL is designed for photodynamic therapy (PDT) amplified immunotherapy against malignant melanoma. After self‐assembly into nanoparticles (designated as PPMA), this self‐delivery system shows high drug loading rate, good dispersion, and stability as well as an excellent capability in producing reactive oxygen species (ROS). After cellular uptake, the ROS generated under light irradiation could induce the apoptosis and/or necrosis of tumor cells, which would subsequently stimulate the anti‐tumor immune response. On the other hand, the melanoma specific antigen (KVPRNQDWL) peptide could also activate the specific cytotoxic T cells for anti‐tumor immunity. Compared to immunotherapy alone, the combined photodynamic immunotherapy exhibits significantly enhanced inhibition of melanoma growth. Both in vitro and in vivo investigations confirm that PDT of PPMA has a positive effect on anti‐tumor immune response. This self‐delivery system demonstrates a great potential of this PDT amplified immunotherapy strategy for advanced or metastatic tumor treatment.  相似文献   

7.
Successful application of anticancer therapy, and especially photodynamic therapy (PDT) mediated by type II (PDTII) processes, depends on the oxygen content within the tumor before, during and after treatment. The high consumption of oxygen during type II PDT imposes constraints on therapy strategies. Although rates of oxygen consumption and repletion during PDTII were suggested by theoretical studies, direct measurements have not been reported. Application of a novel oxygen sensor allowed continuous and direct in situ measurements (up to a depth of 8–9 mm from the tumor surface and for several hours) of temporal variations in the oxygen partial pressure (pO2) during PDT. Highly pigmented M2R mouse melanoma tumors implanted in CD1 nude mice were treated with bacteriochlorophyll-serine (Bchl-Ser; a new photodynamic reagent) and were subjected to fractionated illumination (700 < λ. < 900 nm) at a fluence rate of 12 mW cm-2. This illumination led to total oxygen depletion with an average consumption rate of 7.2 uAf(O2) s-1. Spontaneous reoxygenation (at an average rate of 2.5 µM(O2)/s) was observed during the following dark period. These rates are in good agreement with theoretical considerations (Foster et al., Radiat. Res. 126, 296,1991 and Henning et al, Radiat. Res. 142, 221, 1995). The observed patterns of oxygen consumption and recovery during prolonged periods of light/dark cycles were interpreted in terms of vasculature damage and sensitizer clearance. The presented data support the previously suggested advantages of fractionated illumination for type II photodynamic processes.  相似文献   

8.
Li  ZhaoBo  Wang  JianGuang  Chen  JingRong  Lei  WanHua  Wang  XueSong  Zhang  BaoWen 《中国科学:化学(英文版)》2010,53(9):1994-1999

pH-responsive 1O2 photosensitizing systems may serve as selective photodynamic therapy (PDT) agents by targeting the acidic interstitial fluid of many kinds of tumors. In this work, a natural and clinically used photosensitizer (Hypocrellin B, HB) and a pH indicator (Bromocresol Purple, BCP) were co-encapsulated in organically modified silica nanoparticles. BCP successfully regulated the 1O2 generation efficiency of HB through the “inner filter” effect, which shows much stronger 1O2 generation ability in an acidic than in a basic environment. In vitro experiments also demonstrated that HB-doped nanoparticles are effective in killing tumor cells by PDT.

  相似文献   

9.
In this account, the reactive oxygen species (ROS) in photodynamic therapy (PDT) were deliberately reviewed. First, the specific definition of ROS and PDT were readily clarified. Afterward, this review focuses on the fundamental principles and applications of PDT. Due to strong oxidation ability of radicals (e.g., •OH and O2•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the in vitro and in vivo tumor cells, thus achieving the goal of cancer treatment. Then, ROS in PDT for cancer treatment was thoroughly reviewed, including the mechanism and photosensitizer (PS) selection (i.e., nanomaterials). Ultimately, emphasis was made on the challenges, research gap, and prospects of ROS in cancer treatment and critically discussed. Hopefully, this review can offer detailed theoretical guidance for the researchers who participate in the study regarding ROS in PDT.  相似文献   

10.
A method is developed to fabricate tumor microenvironment (TME) stimuli-responsive nanoplatform for fluorescence (FL) imaging and synergistic cancer therapy via assembling photosensitizer (chlorine e6, Ce6) modified carbon dots (CDs-Ce6) and Cu2+. The as-obtained nanoassemblies (named Cu/CC nanoparticles, NPs) exhibit quenched FL and photosensitization due to the aggregation of CDs-Ce6. Their FL imaging and photodynamic therapy (PDT) functions are recovered efficiently once they entering tumor sites by the stimulation of TME. Introducing of Cu2+ not only provides extra chemodynamic therapy (CDT) function through reaction with hydrogen peroxide (H2O2), but also depletes GSH in tumors by a redox reaction, thus amplifying the intracellular oxidative stress and enhancing the efficacy of reactive oxygen species (ROS) based therapy. Cu/CC NPs can act as a FL imaging guided trimodal synergistic cancer treatment agent by photothermal therapy (PTT), PDT, and thermally amplified CDT.  相似文献   

11.
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non-selective release of photosensitizers still exist. Herein, we report a 1O2-responsive block copolymer (POEGMA-b-P(MAA-co-VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2-responsiveness of POEGMA-b-P(MAA-co-VSPpaMA) block copolymer enabled the realization of self-amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.  相似文献   

12.
When irradiated, fullerene efficiently generates reactive oxygen species (ROS) and is an attractive photosensitizer for photodynamic therapy (PDT). Ideally, photosensitizers for PDT should be water-soluble and tumor-specific. Because cancer cells endocytose glucose more effectively than normal cells, the characteristics of fullerene as a photosensitizer were improved by combining it with glucose. The cytotoxicity of PDT was studied in several cancer cell lines cultured with C60-(Glc)1 (d -glucose residue pendant fullerene) and C60-(6Glc)1 (a maltohexaose residue pendant fullerene) subsequently irradiated with UVA1. PDT alone induced significant cytotoxicity. In contrast, PDT with the glycoconjugated fullerene exhibited no significant cytotoxicity against normal fibroblasts, indicating that PDT with these compounds targeted cancer cells. To investigate whether the effects of PDT with glycoconjugated fullerene were because of the generation of singlet oxygen (1O2), NaN3 was added to cancer cells during irradiation. NaN3 extensively blocked PDT-induced apoptosis, suggesting that PDT-induced cell death was a result of the generation of 1O2. Finally, to investigate the effect of PDT in vivo, melanoma-bearing mice were injected intratumorally with C60-(Glc)1 and irradiated with UVA1. PDT with C60-(Glc)1 suppressed tumor growth. These findings indicate that PDT with glycoconjugated fullerene exhibits tumor-specific cytotoxicity both in vivo and in vitro via the induction of 1O2.  相似文献   

13.
Development of a photosensitizing system that can reversibly control the generation of singlet oxygen (1O2) is of great interest for photodynamic therapy (PDT). Recently several photosensitizer–photochromic‐switch dyads were reported as a potential means of the 1O2 control in PDT. However, the delivery of such a homogeneous molecular dyad as designed (e.g., optimal molar ratio) is extremely challenging in living systems. Herein we show a Zr‐MOF nanoplatform, demonstrating energy transfer‐based 1O2 controlled PDT. Our strategy allows for tuning the ratios between photosensitizer and the switch molecule, enabling maximum control of 1O2 generation. Meanwhile, the MOF provides proximal placement of the functional entities for efficient intermolecular energy transfer. As a result, the MOF nanoparticle formulation showed enhanced PDT efficacy with superior 1O2 control compared to that of homogeneous molecular analogues.  相似文献   

14.
This work reports a newly designed pH-activatable and aniline-substituted aza-boron-dipyrromethene as a trifunctional photosensitizer to achieve highly selective tumor imaging, efficient photodynamic therapy (PDT) and therapeutic self-monitoring through encapsulation in a cRGD-functionalized nanomicelle. The diethylaminophenyl is introduced in to the structure for pH-activatable near-infrared fluorescence and singlet oxygen (1O2) generation, and bromophenyl is imported to increase the 1O2 generation efficiency upon pH activation by virtue of its heavy atom effect. After encapsulation, the nanoprobe can target αvβ3 integrin-rich tumor cells via cRGD and is activated by physiologically acidic pH for cancer discrimination and PDT. The fascinating advantage of the nanoprobe is near-infrared implementation beyond 800 nm, which significantly improves the imaging sensitivity and increases the penetration depth of the PDT. By monitoring the fluorescence decrease in the tumor region after PDT, the therapeutic efficacy is demonstrated in situ and in real time, which provides a valuable and convenient self-feedback function for PDT efficacy tracking. Therefore, this rationally designed and carefully engineered nanoprobe offers a new paradigm for precise tumor theranostics and may provide novel opportunities for future clinical cancer treatment.  相似文献   

15.
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non‐selective release of photosensitizers still exist. Herein, we report a 1O2‐responsive block copolymer (POEGMA‐b‐P(MAA‐co‐VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2‐responsiveness of POEGMA‐b‐P(MAA‐co‐VSPpaMA) block copolymer enabled the realization of self‐amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.  相似文献   

16.
《中国化学快报》2021,32(12):3948-3953
Photodynamic therapy (PDT) has emerged as a potential clinical strategy for tumor therapy. It can generate reactive oxygen species (ROS) to cause the chemical damage of tumor cells and promote the immune killing effects of T cells on tumor cells in the presence of enough oxygen and PDT drugs. However, most solid tumors are in a state of oxygen deficiency, which seriously limit the efficacy of PDT in generation enough ROS. Besides, few safe PDT drugs with ideal pharmacokinetic behavior are available in the clinic, which severely limits the clinical transformation and application of PDT. Herein, we utilized manganese chloride to mineralize the hydrophilic indocyanine green/albumin polyplexes (ICG@BSA@MnO2) by using bio-mineralized method to solve these problems of PDT. These ICG@BSA@MnO2 nanoparticles could circulate in the blood for a long period other than quickly removed from body after 30 min like free ICG. When accumulated at the tumor site, ICG was responsively released in the presence of hydrogen peroxide. Apart this, the tumor hypoxia microenvironment was also reversed owing to enhanced O2 generation by the reaction of MnO2 with hydrogen peroxide. Benefits from the rich accumulation of ICG and ameliorated tumor hypoxia in the tumor sites, the enhanced generation of ROS could successfully promote the distribution of CD3+ and CD8+ T cells inside the tumors, which then lead to the amplified efficacy of PDT in both CT26 and B16F10 tumor models without causing any side effects.  相似文献   

17.
This preclinical study examines light fluence, photodynamic therapy (PDT) dose and “apparent reacted singlet oxygen,” [1O2]rx, to predict local control rate (LCR) for Photofrin‐mediated PDT of radiation‐induced fibrosarcoma (RIF) tumors. Mice bearing RIF tumors were treated with in‐air fluences (50–250 J cm?2) and in‐air fluence rates (50–150 mW cm?2) at Photofrin dosages of 5 and 15 mg kg?1 and a drug‐light interval of 24 h using a 630‐nm, 1‐cm‐diameter collimated laser. A macroscopic model was used to calculate [1O2]rx and PDT dose based on in vivo explicit dosimetry of the drug concentration, light fluence and tissue optical properties. PDT dose and [1O2]rx were defined as a temporal integral of drug concentration and fluence rate, and singlet oxygen concentration consumed divided by the singlet oxygen lifetime, respectively. LCR was stratified for different dose metrics for 74 mice (66 + 8 control). Complete tumor control at 14 days was observed for [1O2]rx ≥ 1.1 mm or PDT dose ≥1200 μm J cm?2 but cannot be predicted with fluence alone. LCR increases with increasing [1O2]rx and PDT dose but is not well correlated with fluence. Comparing dosimetric quantities, [1O2]rx outperformed both PDT dose and fluence in predicting tumor response and correlating with LCR.  相似文献   

18.
Sustained tumor oxygenation is of critical importance during type‐II photodynamic therapy (PDT), which depends on the intratumoral oxygen level for the generation of reactive oxygen species. Herein, the modification of photosynthetic cyanobacteria with the photosensitizer chlorin e6 (ce6) to form ce6‐integrated photosensitive cells, termed ceCyan, is reported. Upon 660 nm laser irradiation, sustained photosynthetic O2 evolution by the cyanobacteria and the immediate generation of reactive singlet oxygen species (1O2) by the integrated photosensitizer could be almost simultaneously achieved for tumor therapy using type‐II PDT both in vitro and in vivo. This work contributes a conceptual while practical paradigm for biocompatible and effective PDT using hybrid microorganisms, displaying a bright future in clinical PDT by microbiotic nanomedicine.  相似文献   

19.
Sustained tumor oxygenation is of critical importance during type-II photodynamic therapy (PDT), which depends on the intratumoral oxygen level for the generation of reactive oxygen species. Herein, the modification of photosynthetic cyanobacteria with the photosensitizer chlorin e6 (ce6) to form ce6-integrated photosensitive cells, termed ceCyan, is reported. Upon 660 nm laser irradiation, sustained photosynthetic O2 evolution by the cyanobacteria and the immediate generation of reactive singlet oxygen species (1O2) by the integrated photosensitizer could be almost simultaneously achieved for tumor therapy using type-II PDT both in vitro and in vivo. This work contributes a conceptual while practical paradigm for biocompatible and effective PDT using hybrid microorganisms, displaying a bright future in clinical PDT by microbiotic nanomedicine.  相似文献   

20.
Strong oxygen dependence and limited penetration depth are the two major challenges facing the clinical application of photodynamic therapy (PDT). In contrast, ionizing radiation is too penetrative and often leads to inefficient radiotherapy (RT) in the clinic because of the lack of effective energy accumulation in the tumor region. Inspired by the complementary advantages of PDT and RT, we present herein the integration of a scintillator and a semiconductor as an ionizing‐radiation‐induced PDT agent, achieving synchronous radiotherapy and depth‐insensitive PDT with diminished oxygen dependence. In the core–shell CeIII‐doped LiYF4@SiO2@ZnO structure, the downconverted ultraviolet fluorescence from the CeIII‐doped LiYF4 nanoscintillator under ionizing irradiation enables the generation of electron–hole (e?–h+) pairs in ZnO nanoparticles, giving rise to the formation of biotoxic hydroxyl radicals. This process is analogous to a type I PDT process for enhanced antitumor therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号