首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an investigation of self-focusing of a quadruple Gaussian laser beam in collisionless magnetized plasma. The nonlinearity due to ponderomotive force which arises on account of nonuniform intensity distribution of the laser beam is considered. The nonlinear partial differential equation governing the evaluation of complex envelope in the slowly varying envelope approximation is solved using a paraxial formalism. The self-focusing mechanism in magnetized plasma, in the presence of self-compression mechanism will be analyzed in contrast to the case in which it is absent. It can be observed that, in case of ponderomotive nonlinearity, the self-compression mechanism obstructs the pulse self-focusing above a certain intensity value. The effect of an external magnetic field is to generate pulses with smaller spot size and shorter compression length. The lateral separation parameter and the initial intensity of the laser beam play a crucial role on focusing and compression parameters. Also, the three-dimensional analysis of pulse propagation is presented by coupling the self-focusing equation with the self-compression one.  相似文献   

2.
Effect of critical beam radius on self-focusing of cosh-Gaussian laser beams in collisionless magnetized plasma under ponderomotive nonlinearity forms the main core of present work. To investigate propagation dynamics of cosh-Gaussian laser beams in collisionless magnetized plasma, well established parabolic equation approach under WKB and paraxial approximations is employed. Our study is crucially pivoted on the concept of critical curve and subsequent determination of numerical interval for decentered parameter to sustain the competition between diffraction and self-focusing during the propagation of laser beam. Additionally, in the present study an interesting feature in the self-focusing region of the critical curve has been attempted for different values of decentered parameter.  相似文献   

3.
Effect of critical beam radius on self-focusing of cosh-Gaussian laser beams in collisionless magnetized plasma under ponderomotive nonlinearity forms the main core of present work. To investigate propagation dynamics of cosh-Gaussian laser beams in collisionless magnetized plasma, well established parabolic equation approach under WKB and paraxial approximations is employed. Our study is crucially pivoted on the concept of critical curve and subsequent determination of numerical interval for decentered parameter to sustain the competition between diffraction and self-focusing during the propagation of laser beam. Additionally, in the present study an interesting feature in the self-focusing region of the critical curve has been attempted for different values of decentered parameter.  相似文献   

4.
Propagation of a Gaussian laser beam in a plasma is analyzed by including the nonlinearity associated with the relativistic mass and the ponderomotive force. We set up the nonlinear differential equation for beam width parameter using parabolic equation approach and solve it numerically. Our results show that the ponderomotive self-focusing contributes in the relativistic self-focusing of the laser beam. An impact of plasma electron temperature, relative density parameter, and intensity parameter on the propagation of the laser beam has been explored.  相似文献   

5.
This article investigates nonlinear self-focusing of an intense right hand circularly polarized Gaussian profile laser pulse in a weakly relativistic and ponderomotive regime inside a collisionless and unmagnetized warm quantum plasma. The nonlinear propagation equation for laser pulse in plasma has been derived. Then, the evolution differential equation for laser spot-size was obtained with considering the parabolic equation approach under the Wentzel-Kramers-Brillouin and paraxial ray approximations. This differential equation was solved numerically by fourth-order Runge-Kutta method. It is shown that our solution confirms the results of the self-focusing of the laser pulse in a weakly relativistic ponderomotive regime in cold quantum plasma in extreme conditions. Numerical results indicate that self-focusing of the laser pulse in the presence of relativistic and ponderomotive nonlinearity inside warm quantum plasma is improved in comparison with relativistic and ponderomotive cold quantum plasma.  相似文献   

6.
In this paper, self-focusing of an intense circularly polarized laser beam in the presence of a non-uniform positive guide magnetic field with slope constant parameter δ in hot magnetized plasma, using Maxwell’s equations and relativistic fluid momentum equation is investigated. An envelope equation governing the spot-size of laser beam for both of left- and right-hand polarizations has been derived, and the effects of the plasma temperature and magnetic field on the electron density distribution of hot plasma with respect to variation of normalized laser spot-size has been studied. Numerical results show that self-focusing is better increased in the presence of an external non-uniform magnetic field. Moreover, in plasma density profile, self-focusing of the laser pulse improves in comparison with no non-uniform magnetic field. Also, with increasing slope of constant parameter of the non-uniform magnetic field, the self-focusing increases, and subsequently, the spot-size of laser pulse propagated through the hot magnetized plasma decreases.  相似文献   

7.
The self-focusing of laser radiation in plasma with ionized gaseous clusters is studied both analytically and numerically. An electrodynamic model is proposed for cluster plasma in a field of ultrashort laser pulse. The radiation self-action dynamics are studied using the equation for wave-field envelope with allowance for the electronic nonlinearity of the expanded plasma bunches and the group-velocity dispersion in a nanodispersive medium. It is shown that, for a laser power exceeding the self-focusing critical power, the wave-field self-compression occurs in a medium with dispersion of any type (normal, anomalous, or combined). Due to the strong dependence of the characteristic nonlinear field on the size of ionized cluster, the corresponding processes develop faster than in a homogeneous medium and give rise to the ultrashort pulses.  相似文献   

8.
实验研究了正色散固体介质中的激光脉冲自压缩现象,证明了无需任何外加色散补偿情况下,固体透明介质中的自聚焦传输过程可使高功率飞秒激光脉冲实现时域脉冲压缩,并详细研究了输出脉冲的时域和频域特性随入射脉冲强度的演化规律.实验结果表明脉冲自压缩量随入射脉冲强度的增加呈递增趋势,然而当入射光强增大到足以引起超连续谱及锥形辐射产生时,脉冲时域形状会发生分裂.此外还发现发散光束入射情况下同样可以观察到脉冲自压缩现象. 关键词: 超短激光脉冲 脉冲压缩 非线性传输  相似文献   

9.
Modulation instability of an intense right-hand elliptically polarized laser beam propagating through magnetized plasma is investigated by a new method. The nonlinear dispersion relation, in which the relativistic and ponderomotive nonlinearities are taken into account, is obtained for the laser radiation in magnetized plasma by the Lorentz transformation. The Karpman equation is firstly generalized to the case of three dimensions with three field components. When the nonlinear frequency shift of the electromagnetic field in plasma is involved, the nonlinear evolution equation for the slowly varying envelope of the laser field is obtained. Thus, modulation instability of the intense laser beam in magnetized plasma is studied and the temporal growth rate of the instability is derived. The analysis shows that the peak growth rate of self-modulation instability is increased due to the axial magnetization of plasma. It is also shown that the growth rate of modulation instability is increased significantly near the critical surface in a laser-plasma.  相似文献   

10.
The propagation of quadruple Gaussian laser beam in a plasma characterized by axial inhomogeneity and nonlinearity due to ponderomotive force in the paraxial ray approximation is investigated. An appropriate expression for the nonlinear dielectric constant has been developed in the presence of external magnetic field, with linear absorption and due to saturation effects for arbitrary large intensity. The effects of different types of plasma axial inhomogeneities on self-focusing of laser beam have been studied with the typical laser and plasma parameters. Self-focusing of quadruple Gaussian laser beam in the presence of externally applied magnetic field and saturating parameter is found significantly improved in the case of extraordinary mode. Our results reveal that initially converging beam shows oscillatory convergence whereas initially diverging beam shows oscillatory divergence. The beam is more focussed at lower intensity in both cases viz. extraordinary and ordinary mode.  相似文献   

11.
The propagation of quadruple Gaussian laser beam in a plasma characterized by axial inhomogeneity and nonlinearity due to ponderomotive force in the paraxial ray approximation is investigated.An appropriate expression for the nonlinear dielectric constant has been developed in the presence of external magnetic field,with linear absorption and due to saturation effects for arbitrary large intensity.The effects of different types of plasma axial inhomogeneities on self-focusing of laser beam have been studied with the typical laser and plasma parameters.Self-focusing of quadruple Gaussian laser beam in the presence of externally applied magnetic field and saturating parameter is found significantly improved in the case of extraordinary mode.Our results reveal that initially converging beam shows oscillatory convergence whereas initially diverging beam shows oscillatory divergence.The beam is more focussed at lower intensity in both cases viz.extraordinary and ordinary mode.  相似文献   

12.
Self-compression of intense ultrashort laser pulses inside a self-guided filament is discussed. The filament self-guiding mechanism requires a balance between diffraction, plasma self-defocusing and Kerr-type self-focusing, which gives rise to asymptotic intensity profiles on axis of the filament. The asymptotic solutions appear as the dominant pulse shaping mechanism in the leading part of the pulse, causing a pinch of the photon density close to zero delay, which substantiates as pulse compression. The simple analytical model is backed up by numerical simulations, confirming the prevalence of spatial coupling mechanisms and explaining the emerging inhomogeneous spatial structure. Numerical simulations confirm that only spatial effects alone may already give rise to filament formation. Consequently, self-compression is explained by a dynamic balance between two optical nonlinearities, giving rise to soliton-like pulse formation inside the filament.  相似文献   

13.
In this paper, the propagation of Cosh Gaussian laser beam and its interaction with isothermal plasma without temperature gradient as well as the effect of the exponential electron temperature gradient are investigated. Here the ponderomotive nonlinearity force is effective mechanism. This force can modify the electron density distribution. All the investigations are carried out for different initial plasma temperatures. Using Maxwell’s equations we obtained the nonlinear second-order differential equation of the dimensionless beam-width parameter (f) on the distance of propagation for several initial electron temperatures and exponential temperature variations. These equations are solved numerically by taking WKB and paraxial approximation. Under the effect of initial electron temperature, self-focusing and defocusing of hyperbolic cosine (cosh) Gaussian laser beam is distinguished. Furthermore, the exponential temperature gradient cause to stationary propagation mode breaks, and self-focusing or defocusing properties is observable.  相似文献   

14.
In the present work, we investigate the distributed regimes of an intense laser beam in a self-consistent plasma channel. As the intensity of the laser beam increases, the relativistic mass effect as well as the ponderomotive expulsion of electrons modifies the dielectric function of the medium due to which the medium exhibits nonlinearity. Based on Wentzel–Kramers–Brillouin and paraxial ray theory, the steady-state solution of an intense, Gaussian electromagnetic beam is studied. A differential equation of the beamwidth parameter with the distance of propagation is derived, including the effects of relativistic self-focusing (SF) and ponderomotive self-channeling. The nature of propagation and radial dynamics of the beam in plasma depend on the power, width of the beam, and Ω p, the ratio of plasma to wave frequency. For a given value of Ω p (<1), the distribution regimes have been obtained in beampower–beamwidth plane, characterizing the regimes of propagation as steady divergence, oscillatory divergence, and SF. The related focusing parameters are optimized introducing plasma density ramp function, and spot size of the laser beam is analyzed for inhomogeneous plasma. This results in overcoming the diffraction and guiding the laser beam over long distance. Numerical computations are performed for typical parameters of relativistic laser–plasma interaction studies.  相似文献   

15.
The self-focusing of a laser pulse through a tunnel ionizing gas (helium) has been studied in both non-relativistic and relativistic regimes, relaxing the near-axis approximation. In the non-relativistic regime, the laser pulse produces multiple ionization of the gas and faces strong defocusing due to the steep radial density gradient caused by the same. The uneven defocusing of paraxial and marginal rays leads to a beam acquiring a ring shaped intensity distribution. In the relativistic regime, the laser pulse produces fully ionized plasma within a few wave periods, subsequently the relativistic mass effect and the ponderomotive force induced electron cavitation cause periodic self-focusing. PACS 52.38.Hb; 42.65.Jx  相似文献   

16.
激光脉冲在等离子体中的压缩分裂   总被引:1,自引:0,他引:1       下载免费PDF全文
通过数值求解一维非线性薛定谔方程,研究了圆偏振入射激光脉冲在初始密度范围为1/4到略低于1倍临界密度的等离子体中的自压缩和分裂现象. 提高等离子体密度和入射激光强度以及减小脉冲宽度可以在更短的传输距离获得有效的激光脉冲压缩,压缩后的脉冲半高宽度可达到初始脉冲半高宽度的1/35,甚至更小. 这种压缩是激光脉冲在等离子体中形成高阶孤子的过程中产生的,可以获得比在稀薄等离子体中更好的压缩比例. 数值计算的结果给出了该情况下激光脉冲在等离子体中自压缩后形成的高阶孤子分裂. 利用一维粒子数值模拟程序(particle-in-cell,PIC)也观察到了脉冲的压缩和分裂现象,得到了与数值计算一致的结果. 关键词: 非线性薛定谔方程 自压缩 脉冲分裂 粒子模拟  相似文献   

17.
The influence of light absorption and temperature on self-focusing of zeroth-order Bessel–Gauss beams through plasma, with relativistic–ponderomotive regime, is investigated in this paper. The nonlinear differential equation for beam-width is established by using parabolic equation approach under Wentzel–Kramers–Brillouin (WKB) paraxial approximation and solved numerically. The numerical results show the effects of beam parameter, relative density plasma, intensity parameter, absorption coefficient and plasma electron temperature on self-focusing of zeroth-order Bessel–Gauss beams in plasma. The self-focusing of Gaussian beams in the considered plasma is also deduced as a particular case in the present work.  相似文献   

18.
19.
The propagation of intense laser pulses in a plasma is discussed in terms of a constant shape, paraxial ray approximation. Self-focusing due to ponderomotive forces and relativistic effects is investigated. It is found that the stationary self-focusing behaviour of each mechanism treated separately is similar, with several orders of magnitude difference in critical power. In stationary self-focusing due to the combined mechanisms, complete saturation of ponderomotive self-focusing prevents the occurrence of relativistic effects. Self-focusing lengths and minimum radii are given for a large range of beam powers. A characteristic focal spot radius is found which depends only on the plasma density.  相似文献   

20.
王伟民  郑春阳 《物理学报》2006,55(1):310-320
讨论高斯型强激光束在具有初始柱对称密度分布的低密度冷等离子体中传播时,等离子体密度分布的不同对激光自聚焦的影响.推导出可以判断更有利于自聚焦发生的评价函数,这样通过比较不同密度分布的评价函数值就可以判断哪种密度分布更有利于自聚焦的发生.为了说明这种方法的有效性,对评价函数进行分析得出:在相同的激光场中等离子体柱的轴心密度给定时(以激光的光轴为轴),离轴越远的地方密度越大及密度变化越陡,自聚焦越容易发生;相对论效应与有质动力共同作用比相对论的单独作用,自聚焦更容易发生.数值模拟证实了评价函数能准确的预测在不 关键词: 自聚焦 相对论效应 有质动力 评价函数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号