首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new phosphates, Bi(4.25)(PO4)2O(3.375) and Bi(5)(PO(4))(2)O(4.5), have been analyzed by single-crystal X-ray diffraction in the series Bi(4+x)(PO4)2O(3+3x/2) (0.175 < or = x < or = 1). The syntheses of the compositions ranging from x = 0.175 to 0.475 were carried out by the ceramic route. The compositions from x = 0.175 to 0.475 form a solid solution with a structure similar to that of Bi(4.25)(PO4)2O(3.375), while Bi(5)(PO4)2O(4.5) was isolated from a mixture of two phases. Both of the phases form fluorite-related structures but, nevertheless, differ from each other with respect to the arrangement of the bismuth atoms. The uniqueness in the structures is the appearance of isolated PO(4) tetrahedra separated by interleaving [Bi2O2] units. ac impedance studies indicate conductivity on the order of 10(-5) S cm(-1) for Bi(4.25)(PO4)2O(3.375). Crystal data: Bi(4.25)(PO4)2O(3.375), triclinic, space group P (No. 1), with a = 7.047(1) A, b = 9.863(2) A, c = 15.365(4) A, alpha = 77.604(4) degrees, beta = 84.556(4) degrees, gamma = 70.152(4) degrees, V = 980.90(4) A3, and Z = 4; Bi(5)(PO4)2O(4.5), monoclinic, space group C2/c (No. 15), with a = 13.093(1) A, b = 5.707(1) A, c = 15.293(1) A, beta = 98.240(2) degrees, V = 1130.95(4) A(3), and Z = 8.  相似文献   

2.
Two new isostructural mixed-metal phosphates, BaTeMO(4)(PO(4)) (M = Nb(5+) or Ta(5+)), have been synthesized as bulk phase powders and single crystals by standard solid-state techniques using BaCO(3), TeO(2), Nb(2)O(5) (or Ta(2)O(5)), and NH(4)H(2)PO(4) as reagents. The materials have novel layered crystal structures consisting of [M(5+)O(6/2)](-) corner-sharing octahedral chains that are connected to [Te(4+)O(4/2)](0) polyhedra and [P(5+)O(2/1)O(2/2)](-) tetrahedra. The Ba(2+) cations reside between the layers and maintain charge balance. The Te(4+) cations are in asymmetric coordination environments attributable to their lone pairs. The Nb(5+) distorts along the local C(4) direction of its octahedron resulting in a "short-long-short-long" Nb-O-Nb bond motif. The Nb(5+) cation displaces away from the oxide ligands that are bonded to Te(4+) or P(5+) cations, attributable to the structural rigidity of the TeO(4) and PO(4) polyhedra. Thus, the TeO(4) and PO(4) polyhedra support and reinforce the intraoctahedral distortion observed within the NbO(6) octahedra. Infrared and Raman spectroscopy, thermogravimetric analysis, and ion-exchange experiments are also presented. Crystal data: BaTeNbO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.7351(9) A, b = 7.5540(10) A, c = 27.455(4) A, V = 1396.8(3) A(3), and Z = 8; BaTeTaO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.734(2) A, b = 7.565(3) A, c = 27.435(9) A, V = 1372.6(8) A(3), and Z = 8.  相似文献   

3.
Single crystals of three new noncentrosymmetric (NCS) phosphates, α (1) and β (2) forms of Cs(3)KBi(2)Mn(4)(PO(4))(6)Cl and α-Cs(3)KBi(2)Fe(4)(PO(4))(6)Cl (3), were grown in a reactive CsCl/KCl molten-salt media. Their structures were determined by single-crystal X-ray diffraction methods showing that the α form crystallizes in the space group Cc (No. 9), which is in one of the 10 NCS polar crystal classes, m (2/m) while the β form crystallizes in P4(3) (No. 78) of another polar class, 4 (4/m). The unit cell parameters of the α form can be approximately correlated with that of the β form via the 3 × 3 orientation matrix [0.5, 0.5, 0; -0.5, 0.5, 0; 0, 0, 2 sin β]. The structures of these otherwise complicated phosphates exhibit two types of channels with circular and elliptical windows where the Cl-centered Cl(Bi(2)Cs) acentric unit is located. The neighboring acentric units are arranged in a parallel fashion in the α form, resulting in the monoclinic (Cc) lattice, but "antiparallel" in the β form, thus giving the tetragonal (P4(3)) unit cell. 1-3 feature the compatible M-O-P unit that contains four crystallographically independent MO(x) (x = 4, 5) polyhedra, which are connected to the Cl(Bi(2)Cs) acentric unit through one short and one long M(II)···Cl bond. The compositions of 1 and 2 consist of three Mn(2+) (d(5)) and one Mn(3+) (d(4)) per formula unit and that of 3 has three Fe(2+) (d(6)) and one Fe(3+) (d(5)). Bond valence sums reveal that, in the α phase, the trivalent site adopts distorted tetrahedral M(1)(3+)O(4) coordination and, in the β phase, distorted trigonal-bipyramidal M(4)(3+)O(5). Thus far, the iron phase has only been isolated in the α form presumably because of little extra stabilization energy gain if the Fe(2+) d(6) ion were to occupy the M(1)O(4) site. The possible origins pertaining to the structural differences in the α and β forms are discussed.  相似文献   

4.
Interaction of the lacunary [alpha-XW9O33](9-) (X = As(III), Sb(III)) with Cu(2+) and Zn(2+) ions in neutral, aqueous medium leads to the formation of dimeric polyoxoanions, [(alpha-XW9O33)2M3(H2O)3](12-) (M = Cu(2+), Zn(2+); X = As(III), Sb(III)), in high yield. The selenium and tellurium analogues of the copper-containing heteropolyanions are also reported: [(alpha-XW9O33)2Cu3(H2O)3](10-) (X = Se(IV), Te(IV)). The polyanions consist of two [alpha-XW9O33] units joined by three equivalent Cu(2+) (X = As, Sb, Se, Te) or Zn(2+) (X = As, Sb) ions. All copper and zinc ions have one terminal water molecule resulting in square-pyramidal coordination geometry. Therefore, the title anions have idealized D3h symmetry. The space between the three transition metal ions is occupied by three sodium ions (M = Cu(2+), Zn(2+); X = As(III), Sb(III)) or potassium ions (M = Cu(2+); X = Se(IV), Te(IV)) leading to a central belt of six metal atoms alternating in position. Reaction of [alpha-AsW9O33](9-) with Zn(2+), Co(2+), and Mn(2+) ions in acidic medium (pH = 4-5) results in the same structural type but with a lower degree of transition-metal substitution, [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Co(2+), Mn(2+)). All nine compounds are characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The solution properties of [(alpha-XW9O33)2Zn3(H2O)3](12-) (X = As(III), Sb(III)) were also studied by 183W-NMR spectroscopy.  相似文献   

5.
Two new mixed-valent tellurium oxides with vanadium(V), A(4)V(6)[Te(2)(4+)Te(6+)]O(24) (A = K and Rb), have been synthesized by hydrothermal and conventional solid state techniques. Their structures were determined by single-crystal X-ray diffraction analysis. These two iso-structural compounds exhibit layered structural topologies consisting of [V(6)Te(3)O(24)](4-) anionic units. In these anionic structural units, a Te(6+)O(6) octahedron is connected to six VO(4) tetrahedra by corner-sharing to generate a [V(6)TeO(24)] unit, and each of these [V(6)TeO(24)] units are interconnected by sharing two Te(4+)O(3) polyhedra to complete the infinite [V(6)Te(3)O(24)](4-) sheets. Infrared spectroscopy, UV-Visible diffuse reflectance spectroscopy, and thermogravimetric analysis were also performed on these two compounds. Crystal data: K(4)V(6)Te(3)O(24), trigonal, space group R ?3c (No. 167) with a = b = 9.7075(6) ?, c = 42.701(3) ?, V = 3484.9(4) ?(3), and Z = 6; Rb(4)V(6)Te(3)O(24), trigonal, space group R ?3c (No. 167) with a = b = 9.8399(9) ?, c = 43.012(4) ?, V = 3606.6(6) ?(3), and Z = 6.  相似文献   

6.
Three novel metal-organic frameworks (MOFs) formulated as [Zn(2)M(BPDC)(3)(DMF)(2)].4DMF (M = Co(II), Ni(II) or Cd(II); BPDC = 4,4'-biphenyldicarboxylate; DMF = N,N'-dimethylformamide) have been prepared via solvothermal synthesis from mixtures of the corresponding transition metal salts and 4,4'-biphenyldicarboxylic acid (H(2)BPDC). The framework structures are characterized by single-crystal X-ray diffraction analysis, IR and UV-vis diffuse reflectance spectroscopy, thermogravimetric analysis (TGA), and X-ray powder diffraction (XRPD). All three compounds possess essentially the same 2-D layered coordination framework consisting of linear heterotrinuclear secondary building units (SBUs) connected by rigid bridging BPDC ligands. Crystal data: for (C(60)H(66)CoN(6)O(18)Zn(2)): monoclinic, space group P2(1)/n, M = 1348.86, a = 20.463(4), b = 14.819(3), c = 23.023(5) A, beta = 111.75(3) degrees , V = 6484(2) A(3), Z = 4, D(c) = 1.382 Mg m(-3). For (C(60)H(66)N(6)NiO(18)Zn(2)): monoclinic, space group P2(1)/n, M = 1348.64, a = 11.670(2), b = 14.742(3), c = 19.391(4) A, beta = 102.29(3) degrees , V = 3259.5(11) A(3), Z = 2, D(c) = 1.374 Mg m(-3). For (C(60)H(66)CdN(6)O(18)Zn(2)): monoclinic, space group P2(1)/n, M = 1402.33, a = 11.491(2), b = 14.837(3), c = 19.386(4) A, beta = 101.53(3) degrees , V = 3238.3(11) A(3), Z = 2, D(c) = 1.438 Mg m(-3).  相似文献   

7.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

8.
Reactions of TabHPF(6) (Tab = 4-(trimethylammonio)benzenethiolate) with three equiv. of M(OAc)(2)·2H(2)O (M = Zn, Cd) gave rise to two tetranuclear adamantane-like compounds, [M(4)(μ-Tab)(6)(Tab)(4)](PF(6))(8)·S (·S: M = Zn, S = DMF·4H(2)O; ·S: M = Cd, S = DMF·5H(2)O). The similar reactions of MCl(2) (M = Zn, Cd, Hg) with four equiv. of TabHPF(6) in the presence of Et(3)N afforded three mononuclear compounds [M(Tab)(4)](PF(6))(2)·S (·S: M = Zn, S = 2(H(2)O)(0.5); ·S: M = Cd, S = 2(H(2)O)(0.5); ·S: M = Hg, S = 2DMF). Treatment of the precursor complex or with equimolar MCl(2) and two equiv. of TabHPF(6) and Et(3)N produced one dinuclear compounds [M(μ-Tab)(Tab)(2)](2)(PF(6))(4)·2DMF·2H(2)O (·2DMF·2H(2)O: M = Zn; ·2DMF·2H(2)O: M = Hg) while analogous reactions of with CdCl(2)·2H(2)O gave rise to [Cd(μ-Tab)(2)(Tab)](2)(PF(6))(4)·2DMF (·2DMF). These compounds were characterized by elemental analysis, IR spectra, UV-Vis spectra, (1)H NMR and single-crystal X-ray crystallography. In or , four M(2+) ions and six S atoms of Tab ligands constitute an adamantane-like [M(4)(μ-S)(6)] cage in which each M(2+) ion is tetrahedrally coordinated by one terminal S and three bridged S atoms from four different Tab ligands. In , each M(2+) center of the [M(Tab)(4)](2+) dication is tetrahedrally coordinated by four S atoms of Tab ligand. Two [M(Tab)(2)](2+) dications in or are further bridged by a pair of Tab ligands to form a dimeric [M(μ-Tab)(Tab)(2)](2)(4+) structure. Each dimeric [(Tab)Cd(μ-Tab)(2)Cd(Tab)](4+) unit in is linked to its two neighboring units via two couples of bridging Tab ligands, thereby generating a unique 1D cationic chain. These results may provide useful information on interpreting structural data of MTs containing group 12 metals.  相似文献   

9.
Two polymorphs of the new cluster compound [Ru(2) Bi(14) Br(4) ](AlCl(4) )(4) have been synthesized from Bi(24) Ru(3) Br(20) in the Lewis acidic ionic liquid [BMIM]Cl/AlCl(3) ([BMIM](+) : 1-n-butyl-3-methylimidazolium) at 140?°C. A large fragment of the precursor's structure, namely the [(Bi(8) )Ru(Bi(4) Br(4) )Ru(Bi(5) )](5+) cluster, dissolved as a whole and transformed into a closely related symmetrical [(Bi(5) )Ru(Bi(4) Br(4) )Ru(Bi(5) )](4+) cluster through structural conversion of a coordinating Bi(8) (2+) to a Bi(5) (+) polycation, while the remainder was left intact. Both modifications have monoclinic unit cells that comprise two formula units (α form: P2(1) /n, a=982.8(2), b=1793.2(4), c=1472.0(3)?pm, β=109.05(3)°; β form: P2(1) /n, a=1163.8(2), b=1442.7(3), c=1500.7(3), β=97.73(3)°). The [Ru(2) Bi(14) Br(4) ](4+) cluster can be regarded as a binuclear inorganic complex of two ruthenium(I) cations that are coordinated by terminal Bi(5) (+) square pyramids and a central Bi(4) Br(4) ring. The presence of a covalent Ru?Ru bond was established by molecular quantum chemical calculations utilizing real-space bonding indicator ELI-D. Structural similarity of the new and parent cluster suggests a structural reorganization or an exchange of the bismuth polycations as mechanisms of cluster formation. In this top-down approach a complex-structured unit formed at high temperature was made available for low-temperature use.  相似文献   

10.
A reaction of ZnO, HCl, H(3)PO(4), and 2-pyridylpiperazine in THF/H(2)O mixture at 75 degrees C for 72 h produces a new zinc phosphate, [(C(5)NH(5))(C(4)N(2)H(10))][Zn(H(2)PO(4))(2)(HPO(4))], I. Zinc phosphate I consists of single four-ring (S4R) units with terminal phosphoryl groups hanging from the Zn center. On reaction with zinc acetate dihydrate in the presence of water at 100 degrees C, I gave another new zinc phosphate, [(C(5)NH(5))(C(4)N(2)H(10))][Zn(2)(H(2)PO(4))(HPO(4))(PO(4))] x 2H(2)O, II. II has a layer structure with apertures formed by 4- and 8-T atoms (T = Zn, P). An examination of the two structures reveals that I and II are related, II being formed by the direct addition of Zn(2+) ions to I. Room-temperature (31)P MAS NMR studies show the presence of different phosphorus species in both compounds. An in-situ (31)P MAS NMR investigation on the formation of II from I in the presence of Zn(2+) ions and water reveals the transformation to be facile. What is noteworthy in this study is that the structural integrity of the S4Rs has been maintained during the formation of II. Donor-acceptor hydrogen bond interactions and pi-pi interactions involving the pyridyl groups also appear to play subtle roles in both phosphates. This study, the first attempt of its kind, combines the principles of supramolecular organic chemistry with inorganic building units and contributes to our understanding of the formation of framework solids.  相似文献   

11.
Crystals of Ba(2)Cu(PO(4))(2) have been grown in a low-temperature eutectic flux of 32% KCl and 68% CuCl (mp = 140 degrees C). The X-ray single-crystal structure analysis shows that this barium copper(II) phosphate crystallizes in a monoclinic lattice with a = 12.160(4) ?, b = 5.133(4) ?, c = 6.885(4) ?, beta = 105.42(4) degrees, and V = 414.3(4) ?(3); C2/m (No. 12); Z = 2. The structure has been refined by the least-squares method to a final solution with R = 0.020, R(w) = 0.026, and GOF = 1.05. The framework of the title compound consists of [Cu(PO(4))(2)](infinity) linear chains with Ba(2+) cations residing between these parallel chains. The chains are composed of an array of Cu(2+) cations that are doubly bridged by PO(4) anions. Each pair of bridging PO(4) tetrahedra are in a staggered configuration above and below the CuO(4) square plane, resulting in a linear chain with a long Cu---Cu separation distance, 5.13 ? ( identical withb). This quasi-one-dimensional framework is unusual among the Cu(2+)-based phosphates. Magnetic susceptibility data shows Curie-Weiss paramagnetic behavior in the range of ca. 190-300 K and a possible antiferro-to-ferromagnetic transition at approximately 8 K. In this paper, the synthesis, structure, and properties of the title compound are presented. A structural comparison to a closely related vanadyl (VO)(2+) phosphate, Ba(2)(VO)(PO(4))(2).H(2)O, as well as Na(2)CuP(2)O(7) will be discussed.  相似文献   

12.
Wang Y  Yu J  Pan Q  Du Y  Zou Y  Xu R 《Inorganic chemistry》2004,43(2):559-565
A 0D vanadium borophosphate [Co(en)(3)](2)[V(3)P(3)BO(19)][H(2)PO(4)].4H(2)O (1) and two 1D vanadium oxides [Co(en)(3)][V(3)O(9)].H(2)O (2) and [Co(dien)(2)][V(3)O(9)].H(2)O (3) have been synthesized hydrothermally from the reaction mixture of V(2)O(5)-H(3)PO(4)-H(3)BO(3)-CoCl(2)-R-H(2)O at 110 degrees C (R: en or dien). The complex cations Co(en)(3)(3+) and Co(dien)(2)(3+) are cooperatively organized in the reaction medium to play a structure-directing role in the formation of the inorganic clusters and chains. The structures are determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The structure of 1 contains isolated [V(3)P(3)BO(19)](5)(-) cluster anions, H(2)PO(4)(-) anions, racemic Co(en)(3)(3+) cations, and H(2)O molecules, which form a complex H-bond network. 2 and 3 both contain chains of corner-sharing VO(4) tetrahedra running along the 2(1) screw axis. The complex cations located in the interchain region interact with the chains through H-bonds. 2 is crystallized in an enantiomorphic space group and only one enantiomer of Co(en)(3)(3+) is involved in the structure. Crystal data: 1, monoclinic, C2/c, a = 32.8492(14) A, b = 11.9601(3) A, c = 22.6001(7) A, beta = 108.9630(8) degrees, Z = 8; 2, orthorhombic, P2(1)2(1)2(1), a = 8.1587(16) A, b = 12.675(3) A, c = 18.046(4) A, Z = 4; 3, monoclinic, P2(1)/c, a = 16.1663(10) A, b = 8.7028(3) A, c = 13.9773(5) A, beta = 103.1340(18) degrees, Z = 4.  相似文献   

13.
Lei C  Mao JG  Sun YQ  Song JL 《Inorganic chemistry》2004,43(6):1964-1968
Hydrothermal reaction of H(3)PO(3), CH(3)NH(2), zinc(II) acetate, 4,4'-bipyridine (bipy), and (NH(4))(6)Mo(7)O(24).4H(2)O at 180 degrees C led to a novel organic-inorganic layered hybrid, [CH(3)NH(3)][H(2)bipy][Zn(4)(bipy)(3)(H(2)O)(2)Mo(V)(8)Mo(VI)O(36)(PO(4))].4H(2)O (1). Its structure was established by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group P2(1)/c with cell parameters of a = 17.3032(2), b = 17.8113(3), and c = 23.4597 (4) A, beta = 106.410(1) degrees, V = 6935.6(2) A(3), and Z = 4. The structure of compound 1 features a novel 2D layer built from the 8e-reduced tetracapped Keggin [Zn(4)Mo(12)O(36)(PO(4))](3)(-) anions, which are further interconnected by bridging bipy ligands. The four zinc(II) ions are in tetrahedral, trigonal bipyramidal, and octahedral coordination geometries, respectively.  相似文献   

14.
Two new compounds, LiBi4Nb3O14 and LiBi4Ta3O14, have been synthesized by the solid-state method, using Li2CO3, Bi2O3, and M2O5 (M = Nb, Ta) in stoichiometric quantities. These compounds crystallize in the monoclinic C2/c space group with a = 13.035(3) A, b = 7.647(2) A, c = 12.217(3) A, beta = 101.512(4) degrees , V = 1193.4(5) A3 , and Z = 4 and a = 13.016(2) A, b = 7.583(1) A, c = 12.226(2) A, beta = 101.477(3) degrees , V = 1182.6(5) A3, and Z = 4, respectively. These are isostructural and the structure along the b axis consists of layers of [Bi2O2]2+ units separated by layers of LiO4 tetrahedra and NbO6 octahedra hence depicting an unusual variation in the Aurivillius phase isolated for the first time. The presence of lithium has been confirmed by 7Li NMR studies. ac impedance measurements and variable temperature (7)Li NMR studies indicate oxygen ion conductivity in these materials. The UV-visible spectra suggest a band gap of 3.0 eV for LiBi4Nb3O14 and 3.5 eV for LiBi4Ta3O14, respectively, and the associated studies on degradation of dyes and phenols render these materials suitable for photocatalysis.  相似文献   

15.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive.  相似文献   

16.
Wang Y  Chen P  Li J  Yu J  Xu J  Pan Q  Xu R 《Inorganic chemistry》2006,45(12):4764-4768
A new chiral layered zincophosphate [d-Co(en)3]Zn3(H(0.5)PO4)2(HPO4)2, designated ZnPO-CJ16, has been hydrothermally synthesized by using the optically pure chiral metal complex d-Co(en)3I3 as the template. It contains 4.6-net sheets which array in a helical fashion with an ABCDEF stacking sequence along the [001] direction. The chiral d-Co(en)3(3+) complex cations reside in the interlayer regions. Interestingly, there exist symmetrical O...H...O H-bonds between inorganic sheets, which results in a pseudo-three-dimensional open-framework structure stabilized by strong H-bonds. The crystal data are as follows: ZnPO-CJ16, [d-Co(en)3]Zn3(H(0.5)PO4)2(HPO4)2; M = 818.26; hexagonal; P6(5)22 (No. 179); a = 8.5832(12) A; c = 52.610(11) A; U = 3356.6(9) A(3); T = 293(2) K; Z = 6; R1 = 0.0415 (I > 2sigma(I)); wR2 = 0.1383 (all data); Flack parameter, 0.04(4).  相似文献   

17.
Synthesis and Crystal Structure of Hydrogen Selenates of Divalent Metals – M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) New hydrogen selenates M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) have been synthesized using MSeO4 (M = Mg, Mn, Zn, Cd) and 90% selenic acid as starting materials. The crystal structures have been determined by X-ray single crystal crystallography. The compounds M(HSeO4)2 (M = Mg, Zn) belong to the structure type of Mg(HSO4)2, whereas Mn(HSeO4)2 forms a new structure type. Both hydrogen selenate monohydrates are isotypic to Mg(HSO4)2 · H2O. In all compounds the metal atoms are octahedrally coordinated by oxygen atoms of different HSeO4-tetrahedra. In the HSeO4-tetrahedra the Se–OH-distances (mean value 1.70 Å) are about 0.1 Å longer than Se–O-distances (mean value 1.62 Å). In the structure of M(HSeO4)2 (M = Mg, Zn) there are zigzag chains of hydrogen bonded HSeO4-tetrahedra. The structure of Mn(HSeO4)2 is characterized by chains of HSeO4-tetrahedra in form of screws. Hydrogen bonds from and to water molecules connect double layers of MO6-octahedra and HSeO4-tetrahedra in the structures of M(HSeO4)2 · H2O.  相似文献   

18.
[Zn2(PCP)(phen)(H2O)F]n 1 and {[Zn3(MCP)2(phen)2(H2O)]·2.5H2O}n 2(PCP = p-O2C(C6H4)PO33-,MCP = m-O2C(C6H4)PO33- and phen = phenanthroline) were obtained by hydrothermal synthesis and characterized by X-ray single-crystal diffraction.Compound 1 crystallizes in the monoclinic P21/c space group with a = 7.908(2),b = 20.254(3),c = 13.477(2) ,β = 107.76(3)°,V = 2055.7(8) 3,Z = 4,C20H16FN2O6PZn2,Mr = 561.10,Dc = 1.813 g/cm3,μ = 2.463 mm-1,F(000) = 1128,the final R = 0.0340 and wR = 0.0794.Compound 2 crystallizes in the monoclinic P21/n space group with a = 15.629(3),b = 18.141(4),c = 17.723(7) ,β = 121.89(2)°,V = 4267(2) 3,Z = 4,C40H31N4O13.5P2Zn3,Mr = 1041.70,Dc = 1.620 g/cm3,μ = 1.818 mm-1,F(000) = 2108,the final R = 0.0669 and wR = 0.1775.In compound 1,the tetranuclear Zn4 units are linked together by μ4-PCP3- to build 2D(4,4) layers,which are further interconnected through the μ2-bridging fluorion into a 3D framework with 1D phen ligands-filled channels.As for the 3D supramolecular framework of 2,the novel hexanuclear Zn6 units with "chair" conformation are extended by the moieties of μ4-MCP3- ligand to a 2D(4,4) layer on the bc plane,which is viewed as the 2-folded layers in 1.In both compounds,the structures are stabilized by hydrogen bonding interactions and π-π stacking interactions between the phen rings.Additionally,FT-IR spectroscopy and the fluorescent properties are discussed.  相似文献   

19.
We report the interaction between B-type tri-lacunary heteropolyoxotungstate anions and actinyl(V) cations in aqueous solution, yielding a greater understanding of the stability of the O≡An≡O(1+) linear dioxo actinide moiety. Previously we reported that B-α-[BiW(9)O(33)](9-) and B-α-[SbW(9)O(33)](9-) will react with NpO(2)(1+) to yield [(Np(3)W(4)O(15))(H(2)O)(3)(MW(9)O(33))(3)](18-) (M = Bi, or Sb). Single crystal structural characterisation of salts of these complexes revealed a core in which three Np(V) atoms interact with a central W(VI) atom through bridging oxo groups. These bridging oxygen atoms come from one of the two axial oxygens in O≡Np≡O(1+) and represent a highly unusual interaction for a discrete molecular species. In this study visible/near infra-red spectroscopy indicates that [(Np(3)W(4)O(15))(H(2)O)(3)(BiW(9)O(33))(3)](18-) could be readily stabilized in solution at near neutral pH for several months, with (NH(4))(14)Na(4)[(Np(3)W(4)O(15))(H(2)O)(39)BiW(9)O(33))(3)]·62H(2)O crystallising from solution in high yield. At lower pH and [BiW(9)O(33)](9-) : NpO(2)(1+) ratios additional Np(V) species could be observed in solution. Stabilization of [(Np(3)W(4)O(15))(H(2)O)(3)(SbW(9)O(33))(3)](18-) in solution proved more challenging, with several distinctive Np(V) near infra-red transitions observed in solution. Slow complexation kinetics and reduction to Np(IV) was also observed. High [SbW(9)O(33)](9-) : NpO(2)(1+) molar ratios and careful control of solution pH was required to prepare solutions in which [(Np(3)W(4)O(15))(H(2)O)(3)(SbW(9)O(33))(3)](18-) was the only neptunium containing species. In stark contrast to the NpO(2)(1+) chemistry, [BiW(9)O(33)](9-) readily oxidizes PuO(2)(1+) to PuO(2)(2+) yielding further evidence of the decreased stability of Pu(V)vs. Np(V). Np L(II)-edge XAFS measurement revealed very good agreement with single crystal diffraction data for the Np structural environment for [(Np(3)W(4)O(15))(H(2)O)(3)(MW(9)O(33))(3)](18-) (M = Bi, or Sb) in the solid state. There was also good agreement between coordination shells for [(Np(3)W(4)O(15))(H(2)O)(3)(BiW(9)O(33))(3)](18-) in the solid state and in solution, yielding further confirmation of the high stability of this particular cluster.  相似文献   

20.
Dai Z  Chen X  Shi Z  Zhang D  Li G  Feng S 《Inorganic chemistry》2003,42(3):908-912
Two inorganic-organic hybrid compounds with the formula M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (M = Co, Ni) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compounds Co(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (1) and Ni(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (2), which are structural analogues, crystallize in the triclinic space group Ponemacr; with crystal data a = 7.9665(3) A, b = 8.1974(3) A, c = 13.8096(4) A, alpha = 85.704(2) degrees, beta = 73.5180(10) degrees, gamma = 75.645(2) degrees, V = 837.76(5) A(3), and Z = 2 and a = 7.9489(19) A, b = 8.128(2) A, c = 13.709 A, alpha = 85.838(6) degrees, beta = 73.736(8) degrees, gamma = 75.594(9) degrees, V = 823.5(4) A(3), and Z = 2, respectively. [M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10)] (M = Co, Ni) have a three-dimensional structure and consist of two subunits, [(VO(2))(SeO(3))](-) infinite chains and [M(4,4'-bipy)(H(2)O)](2+) fragments. The [(VO(2))(SeO(3))](-) chains are composed of [V(2)Se(4)O(14)](4)(-) clusters linked by VO(4)N triangular bipyramids. The 4,4'-bipy molecule as a bifunctional organic ligand is directly linked to Co or Ni and V atoms, affording the three-dimensionality. The compounds were characterized by infrared spectroscopy and differential thermal and thermogravimetric analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号