首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we develop a theoretical framework about spatial patterns in a three-species predator–prey–mutualist system with cross-diffusion. We concentrate on three aspects of Turing pattern formation: (1) what conditions enable the occurrence of Turing patterns? (2) what are the underlying mechanisms? (3) what are the corresponding configurations? For the first two questions, by use of the stability analysis for the positive uniform solution and the Leray–Schauder degree theory, we prove that under some conditions, the system admits at least a nonhomogeneous stationary solution. For the third question, we carry out numerical simulations for a Turing pattern, and we show that the configurations of Turing pattern are stable spotted patterns, which resemble a real ecosystem.  相似文献   

2.
Ratio-dependent predator-prey models have been increasingly favored by field ecologists where predator-prey interactions have to be taken into account the process of predation search. In this paper we study the conditions of the existence and stability properties of the equilibrium solutions in a reaction-diffusion model in which predator mortality is neither a constant nor an unbounded function, but it is increasing with the predator abundance. We show that analytically at a certain critical value a diffusion driven (Turing type) instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion). We also show that the stationary solution becomes unstable with respect to the system with diffusion and that Turing bifurcation takes place: a spatially non-homogenous (non-constant) solution (structure or pattern) arises. A numerical scheme that preserve the positivity of the numerical solutions and the boundedness of prey solution will be presented. Numerical examples are also included.  相似文献   

3.
We study existence and stability of stationary solutions of a system of semilinear parabolic partial differential equations that occurs in population genetics. It describes the evolution of gamete frequencies in a geographically structured population of migrating individuals in a bounded habitat. Fitness of individuals is determined additively by two recombining, diallelic genetic loci that are subject to spatially varying selection. Migration is modeled by diffusion. Of most interest are spatially non-constant stationary solutions, so-called clines. In a two-locus cline all four gametes are present in the population, i.e., it is an internal stationary solution. We provide conditions for existence and linear stability of a two-locus cline if recombination is either sufficiently weak or sufficiently strong relative to selection and diffusion. For strong recombination, we also prove uniqueness and global asymptotic stability. For arbitrary recombination, we determine the stability properties of the monomorphic equilibria, which represent fixation of a single gamete.  相似文献   

4.
In this paper we formulate a predator–prey system in two patches in which the per capita migration rate of each species is influenced only by its own density, i.e. there is no response to the density of the other one. Numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation, i.e. the stable constant steady state loses its stability and spatially non-constant stationary solutions, a pattern emerge.  相似文献   

5.
This paper deals with a nonlinear system of parabolic–elliptic type with a logistic source term and coupled boundary conditions related to pattern formation. We prove the existence of a unique positive global in time classical solution. We also analyze the associated stationary problem. Moreover it is proved, under the assumption of sufficiently strong logistic damping, that there is only one nonzero homogeneous equilibrium, and all the solutions to the nonstationary problem tend to this steady state for large times.  相似文献   

6.
7.
We study convergence in variation of probability solutions of nonlinear Fokker–Planck–Kolmogorov equations to stationary solutions. We obtain sufficient conditions for the exponential convergence of solutions to the stationary solution in case of coefficients that can have an arbitrary growth at infinity and depend on the solutions through convolutions with unbounded discontinuous kernels. In addition, we study a more difficult case where the nonlinear equation has several stationary solutions and convergence to a stationary solution depends on initial data. Finally, we obtain sufficient conditions for solvability of nonlinear Fokker–Planck–Kolmogorov equations.  相似文献   

8.
We study the simplest one-dimensional model of plasma density balance in a tokamak type system, which can be reduced to an initial boundary-value problem for a second-order parabolic equation with implicit degeneration containing nonlocal (integral) operators. The problem of stabilizing nonstationary solutions to stationary ones is reduced to studying the solvability of a nonlinear integro-differential boundary-value problem. We obtain sufficient conditions for the parameters of this boundary-value problem to provide the existence and the uniqueness of a classical stationary solution, and for this solution we obtain the attraction domain by a constructive method.  相似文献   

9.
We study the stationary solutions for a reaction-diffusion system of activator-inhibitor type which arises as a model for fungal development. Under the condition that the activator diffuses slowly and the inhibitor diffuses very quickly we rigorously construct solutions which show single peak pattern near the boundary or in the interior in the activator component and have nearly constant values in the other. We also establish the linear stability and instability of such solutions.  相似文献   

10.
In this paper, we study the attractivity properties of the set of stationary solutions for a general class of second order non-smooth dynamical system involving friction term. Sufficient conditions for the local attractivity of the set of stationary solutions are given in the case of dry friction and negative viscous damping. An estimation of the attraction domain is also given in this case. Applications can be found in unilateral mechanics.  相似文献   

11.
We consider the exponential stability of stochastic evolution equations with Lipschitz continuous non-linearities when zero is not a solution for these equations. We prove the existence of a non-trivial stationary solution which is exponentially stable, where the stationary solution is generated by the composition of a random variable and the Wiener shift. We also construct stationary solutions with the stronger property of attracting bounded sets uniformly. The existence of these stationary solutions follows from the theory of random dynamical systems and their attractors. In addition, we prove some perturbation results and formulate conditions for the existence of stationary solutions for semilinear stochastic partial differential equations with Lipschitz continuous non-linearities.  相似文献   

12.
In this paper, we consider a nonlinear elliptic system which is an extension of the single equation derived by investigating the stationary states of the nonlinear Schrödinger equation. We establish the existence and uniqueness of solutions to the Dirichlet problem on the ball. In addition, the nonexistence of the ground state solutions under certain conditions on the nonlinearities and the complete structure of different types of solutions to the shooting problem are proved.  相似文献   

13.
In this note,we present a framework for the large time behavior of general uniformly bounded weak entropy solutions to the Cauchy problem of Euler-Poisson system of semiconductor devices.It is shown that the solutions converges to the stationary solutions exponentially in time.No smallness and regularity conditions are assumed.  相似文献   

14.
In this paper we study the problem of the global existence(in time) of weak,entropic solutions to a system of three hyperbolic conservation laws, in one space dimension,for large initial data. The system models the dynamics of phase transitions in an isothermal fluid; in Lagrangian coordinates, the phase interfaces are represented as stationary contact discontinuities. We focus on the persistence of solutions consisting in three bulk phases separated by two interfaces. Under some stability conditions on the phase configuration and by a suitable front tracking algorithm we show that, if the BV-norm of the initial data is less than an explicit(large) threshold, then the Cauchy problem has global solutions.  相似文献   

15.
We analyze the local upper Lipschitz behavior of critical points, stationary solutions and local minimizers to parametric C 1,1 programs. In particular, we derive a characterization of this property for the stationary solution set map without assuming the Mangasarian–Fromovitz CQ. Moreover, conditions which also ensure the persistence of solvability are given, and the special case of linear constraints is handled. The present paper takes pattern from [21] by continuing the approach via contingent derivatives of the Kojima function associated with the given optimization problem. Received: June 10, 1999 / Accepted: November 15, 1999?Published online July 20, 2000  相似文献   

16.
In this paper, we study the stationary flow for a one-dimensional isentropic bipolar Euler-Poisson system (hydrodynamic model) for semiconductor devices. This model consists of the continuous equations for the electron and hole densities, and their current densities, coupled the Poisson equation of the electrostatic potential. In a bounded interval supplemented by the proper boundary conditions, we first show the unique existence of stationary solutions of the one-dimensional isentropic hydrodynamic model, based on the Schauder fixed-point principle and the careful energy estimates. Next, we investigate the zero-electron-mass limit, combined zero-electron mass and zero-hole mass limit, the zero-relaxation-time limit and the Debye-length (quasi-neutral) limit, respectively. We also show the strong convergence of the sequence of solutions and give the associated convergence rates.  相似文献   

17.
We consider the equations of stationary incompressible magnetohydrodynamics posed in three dimensions, and treat the full coupled system of equations with inhomogeneous boundary conditions. We prove the existence of solutions without any conditions on the data. Also we discuss a finite element discretization and prove the existence of a discrete solution, again without any conditions on the data. Finally, we derive error estimates for the nonlinear case.

  相似文献   


18.
We analyze the well-posedness of the initial value problem for the generalized micropolar fluid system in a space of tempered distributions and also prove the existence of the stationary solutions. The asymptotic stability of solutions is showed in this space, and as a consequence, a criterium for vanishing small perturbations of initial data (stationary solution) at large time is obtained. A fast decay of the solutions is obtained when we assume more regularity on the initial data.  相似文献   

19.
We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded.  相似文献   

20.
In this work we study the generalized Boussinesq equation with a dissipation term. We show that, under suitable conditions, a global solution for the initial value problem exists. In addition, we derive sufficient conditions for the blow-up of the solution to the problem. Furthermore, the instability of the stationary solutions of this equation is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号