首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1663篇
  免费   65篇
  国内免费   26篇
化学   1034篇
晶体学   7篇
力学   60篇
数学   256篇
物理学   397篇
  2023年   14篇
  2022年   8篇
  2021年   23篇
  2020年   45篇
  2019年   30篇
  2018年   22篇
  2017年   16篇
  2016年   36篇
  2015年   29篇
  2014年   47篇
  2013年   72篇
  2012年   115篇
  2011年   118篇
  2010年   69篇
  2009年   59篇
  2008年   118篇
  2007年   79篇
  2006年   91篇
  2005年   96篇
  2004年   71篇
  2003年   58篇
  2002年   56篇
  2001年   42篇
  2000年   33篇
  1999年   19篇
  1998年   14篇
  1997年   8篇
  1996年   22篇
  1995年   14篇
  1994年   24篇
  1993年   25篇
  1992年   19篇
  1991年   22篇
  1990年   18篇
  1989年   14篇
  1988年   9篇
  1987年   10篇
  1986年   17篇
  1985年   13篇
  1984年   26篇
  1983年   12篇
  1982年   14篇
  1981年   8篇
  1980年   10篇
  1979年   11篇
  1978年   8篇
  1977年   19篇
  1976年   12篇
  1974年   12篇
  1973年   10篇
排序方式: 共有1754条查询结果,搜索用时 157 毫秒
1.

A Savitzky–Golay filtering for smoothing and peak search written in Python is presented in this paper alongside its applications in the list-mode digital data acquisition dual gamma–gamma coincidence bismuth germanate (BGO) detector. The study has demonstrated that the software provides a reliable and effective way to quantify trace amounts of 22Na and 7Be in aerosol samples collected at Resolute Bay, Canada with a critical limit of 3 mBq and 5 Bq respectively for a 20 h counting interval, which are believed to be the inherent limitations of the dual-BGO system.

  相似文献   
2.
Letters in Mathematical Physics - Let L be an even (positive definite) lattice and $$g\in O(L)$$. In this article, we prove that the orbifold vertex operator algebra $$V_{L}^{{\hat{g}}}$$ has...  相似文献   
3.
The critical dimension necessary for a flame to propagate in suspensions of fuel particles in oxidiser is studied analytically and numerically. Two types of models are considered: First, a continuum model, wherein the individual particulate sources are not resolved and the heat release is assumed spatially uniform, is solved via conventional finite difference techniques. Second, a discrete source model, wherein the heat diffusion from individual sources is modelled via superposition of the Green's function of each source, is employed to examine the influence of the random, discrete nature of the media. Heat transfer to cold, isothermal walls and to a layer of inert gas surrounding the reactive medium are considered as the loss mechanisms. Both cylindrical and rectangular (slab) geometries of the reactive medium are considered, and the flame speed is measured as a function of the diameter and thickness of the domains, respectively. In the continuum model with inert gas confinement, a universal scaling of critical diameter to critical thickness near 2:1 is found. In the discrete source model, as the time scale of heat release of the sources is made small compared to the interparticle diffusion time, the geometric scaling between cylinders and slabs exhibits values greater than 2:1. The ability of the flame in the discrete regime to propagate in thinner slabs than predicted by continuum scaling is attributed to the flame being able to exploit local fluctuations in concentration across the slab to sustain propagation. As the heat release time of the sources is increased, the discrete source model reverts back to results consistent with the continuum model. Implications of these results for experiments are discussed.  相似文献   
4.
Using reverse thinking of the aggregation-induced emission (AIE) principle, we demonstrate an ingenious and universal protocol for amplifying molecular motions to boost photothermal efficiency of fibers. Core–shell nanofibers having the olive oil solution of AIE-active molecules as the core surrounded by PVDF-HFP shell were constructed by coaxial electrospinning. The molecularly dissolved state of AIE-active molecules allows them to freely rotate and/or vibrate in nanofibers upon photoexcitation and thus significantly elevates the proportion of non-radiative energy dissipation, affording impressive heat-generating efficiency. Photothermal evaluation shows that the core–shell nanofibers with excellent durability can reach up to 22.36 % of photothermal conversion efficiency, which is 26-fold as the non-core–shell counterpart. Such a core–shell fiber can be used for photothermal textiles and solar steam generation induced by natural sunlight with green and carbon-zero emission.  相似文献   
5.
Previously, master equation (ME) simulations using semiclassical transition state theory (SCTST) and high-accuracy extrapolated ab initio thermochemistry (HEAT) predicted rate constants in excellent agreement with published experimental data over a wide range of pressure and temperatures ≳250 K, but the agreement was not as good at lower temperatures. Possible reasons for this reduced performance are investigated by (a) critically evaluating the published experimental data and by investigating; (b) three distinct ME treatments of angular momentum, including one that is exact at the zero- and infinite-pressure limits; (c) a hindered-rotor model for HOCO that implicitly includes the cis- and trans-conformers; (d) possible empirical adjustments of the thermochemistry; (e) possible empirical adjustments to an imaginary frequency controlling tunneling; (f) including or neglecting the prereaction complex PRC1; and (g) its possible bimolecular reactions. Improvements include better approximations to factors in SCTST and using the Hill and van Vleck treatment of angular momentum coupling. Evaluation of literature data does not reveal any specific shortcomings, but the stated uncertainties may be underestimated. All ME treatments give excellent fits to experimental data at T ≥ 250 K, but the discrepancy at T < 250 K persists. Note that each ME model requires individual empirical energy transfer parameters. Thermochemical adjustments were unable to match the experimental H/D kinetic isotope effects. Adjusting an imaginary frequency can achieve good fits, but the adjustments are unacceptably large. Whether PRC1 and its possible bimolecular reactions are included had little effect. We conclude that none of the adjustments is an improvement over the unadjusted theory. Note that only one set of experimental data exists in the regime of the discrepancy with theory, and data for DO + CO are scanty.  相似文献   
6.
The photoinitiation abilities of three 1,2-diketones [i.e., acenaphthenequinone ( ANPQ ), aceanthrenequinone ( AATQ ), and 9,10-phenanthrenequinone ( PANQ )]-based photoinitiating systems [PISs, with additives such as iodonium salt, N-vinylcarbazole (NVK), tertiary amine, and phenacyl bromide (R-Br)] for cationic photopolymerization and free-radical photopolymerization under the irradiation of ultraviolet (UV; 392 nm) or blue (455 nm) light-emitting diode (LED) bulb are investigated. All 1,2-diketones studied exhibit ground state absorption that match with the emission spectra of UV (392 nm) or blue LED (455 nm) better than that of the well-known blue-light-sensitive photoinitiator camphorquinone (CQ). In particular, AATQ /iodonium salt/NVK can show high photoinitiating ability (with epoxide conversion yield >70%) under the UV light irradiation due to the effect of NVK. In addition, 1,2-diketone/iodonium salt (and optional NVK) systems are capable of initiating free-radical photopolymerization of methacrylates, with conversions of 50–58%. Furthermore, some 1,2-diketone/tertiary amine (and optional R-Br) combinations are found to demonstrate high efficiency to initiate free-radical photopolymerization, and 71% of methacrylate conversion can be achieved with PANQ /tertiary amine/R-Br PIS. Some 1,2-ketone-based PISs can even exhibit higher efficiency than the CQ-based systems. The photochemical mechanism of the radical generation from the 1,2-diketone-based PISs is investigated and found to be consistent with the related photopolymerization efficiency. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 792–802  相似文献   
7.
Molecular recognition of complex isomeric biomolecules remains challenging in surface-enhanced Raman scattering (SERS) spectroscopy due to their small Raman cross-sections and/or poor surface affinities. To date, the use of molecular probes has achieved excellent molecular sensitivities but still suffers from poor spectral specificity. Here, we induce “charge and geometry complementarity” between probe and analyte as a key strategy to achieve high spectral specificity for effective SERS molecular recognition of structural analogues. We employ 4-mercaptopyridine (MPY) as the probe, and chondroitin sulfate (CS) disaccharides with isomeric sulfation patterns as our proof-of-concept study. Our experimental and in silico studies reveal that “charge and geometry complementarity” between MPY's binding pocket and the CS sulfation patterns drives the formation of site-specific, multidentate interactions at the respective CS isomerism sites, which “locks” each CS in its analogue-specific complex geometry, akin to molecular docking events. Leveraging the resultant spectral fingerprints, we achieve > 97 % classification accuracy for 4 CSs and 5 potential structural interferences, as well as attain multiplex CS quantification with < 3 % prediction error. These insights could enable practical SERS differentiation of biologically important isomers to meet the burgeoning demand for fast-responding applications across various fields such as biodiagnostics, food and environmental surveillance.  相似文献   
8.
A unique benzannulation strategy for regioselective de novo synthesis of densely functionalized phenols is described. Through metal-mediated formal [2+2+1+1] cycloaddition of two different alkynes and two molecules of CO, a series of densely functionalized phenols were obtained. The benzannulation strategy allows efficient regioselective installation up to five different substituents on a phenol ring. The resulting phenols have a substitution pattern different from those obtained from Dötz and Danheiser benzannulations.  相似文献   
9.
Functional materials with multi-responsive properties and good controllability are highly desired for developing bioinspired and intelligent multifunctional systems. Although some chromic molecules have been developed, it is still challenging to realize in situ multicolor fluorescence changes based on a single luminogen. Herein, we reported an aggregation-induced emission (AIE) luminogen called CPVCM, which can undergo a specific amination with primary amines to trigger luminescence change and photoarrangement under UV irradiation at the same active site. Detailed mechanistic insights were carried out to illustrate the reactivity and reaction pathways. Accordingly, multiple-colored images, a quick response code with dynamic colors, and an all-round information encryption system were demonstrated to show the properties of multiple controls and responses. It is believed that this work not only provides a strategy to develop multiresponsive luminogens but also develops an information encryption system based on luminescent materials.  相似文献   
10.
Multi‐Species Multi‐Channel (MSMC) is an ab initio parallel program to calculate thermodynamic quantities (e.g., , , , and , time‐dependent species profiles, and rate coefficients as functions of temperature and pressure for complex chemical reaction systems, which consist of multiple stable species and multiple reaction channels interconnecting them. Thermodynamic properties of the species involved are calculated using statistical mechanics with molecular information from electronic structure calculations. Temperature‐ and pressure‐dependent behaviors are rigorously characterized within the eigenpair master equation/Rice–Ramsperger–Kassel–Marcus (ME/RRKM) framework. Corrections, e.g., for hindered internal rotation and tunneling treatment, are included. With the implementation of an ultra‐high precision package and rigorous matrix setup, MSMC is able to correctly mimic real behaviors of different types of chemical systems. Different eigenpair‐based approaches to extract phenomenological/macroscopic rate coefficients are implemented for different applications. Moreover, a friendly and platform‐independent graphical‐user‐interface (GUI) is provided to facilitate the use of MSMC and the pre‐/postcalculation data visualization/analysis on the fly. The program can be freely downloaded at https://sites.google.com/site/msmccode/ .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号