首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The reaction of 1 mol equivalent of MoCl2(NO)T* p [T* p = tris(3,5 dimethylpyrazolyl)borate] with one mole equivalent of the zinc Schiff base complexes obtained from the condensation of 2,5-dihydroxybenzaldehyde, salicylaldehyde and a series of , diamines [NH2(CH2) n NH2, n = 2–4] is described, together with the i.r.; u.v.–vis. and 1H-n.m.r. spectroscopic properties of these products. Cyclic voltammetric data in CH2Cl2 reveal that the binuclear complex products undergo reversible one-electron reductions associated with the MoCl(NO)T* p centre. No zinc-based redox processes in the new complexes could be detected on the cyclic voltammetry timescale. The behaviour of the MoCl(NO)T* p centre in DMSO indicates that the complexes undergo irreversible reductions at anodically shifted potentials (in comparison with the reduction of binuclear complexes in CH2Cl2), indicating that reductions of the binuclear complexes are solvent dependent.  相似文献   

2.
Mo(NO)T p * Cl2 (T p * ?=?3,5-dimethyl pyrazole) when reacted with m-functionalized Fe(III) Schiff base complexes; the Schiff base ligands being derived from condensation of 2,4-dihydroxybenzaldehyde or salicylaldehyde with a variety of ??,??-diamines [1,2-C6H4(NH2)2, NH2(CH2) n NH2; n?=?2?C4] affords bimetallic complexes containing two potential reduction centers. The compounds were characterized by physicochemical and spectroscopic methods. It is shown that as the polymethylene carbon chain of the Schiff base backbone increases, the physicochemical and spectroscopic properties also change gradually. Electrochemical data show that the m-functionalized complexes reduce at potentials less cathodic than their p-substituted analogues. It is also shown that the redox potentials are solvent dependent.  相似文献   

3.
Six new cis-dioxidomolybdenum(VI) complexes featured with a tridentate ONO donor Schiff base derived from salicylidene-2-aminophenolato backbone have been synthesised and characterised by elemental analysis, spectroscopic techniques (like IR, UV-vis and 1H-NMR) and cyclic voltammetry. Suitable single crystals of the parent complex [MoO2L(MeOH)]2·H2O ( 1 ) was obtained by the slow evaporation of the mother liquor, whereas the crystals of the complexes 2 - 6 were grown in coordinating solvents like ethanol, DMF, DMSO etc. and were characterised by single crystal X-ray diffraction as monomers stabilised by the solvent molecules used for the recrystallization purpose. The structures of the complexes were further quantified using Hirshfeld surface analysis. The Schiff base acts as a colorimetric chemosensor for CN- ions in DMSO solution. The receptor-CN- ion interaction and the sensing mechanism of the chemosensor were verified by colorimetric, UV-vis, 1H-NMR and FT-IR spectroscopic studies. Hydroxyl moiety present in the receptor function as the binding site for cyanide ion thereby leading to its optical discrimination in presence of other anions by producing a visible colour change from colourless to yellow. Therefore the Schiff base sensor portrays estimable selectivity and sensitivity towards CN- ion. Additionally the Schiff base as well as the molybdenum complexes exhibit good third order non-linear optical properties and optical power limiting when analysed by the Z-scan technique.  相似文献   

4.
A thermodynamic study is reported for the coordination reaction of ZnT ( m-X)PP derivatives (X = NO2, Cl, OCH3, H or CH3) with various ligands L (L= imidazole (Im), 2-methylimidazole (MeIm), clotrimidazole (CIM), imidazole-4-carboxaldehyde (4-CHOIm), unsymmetrical tetradentate copper Schiff base, CuIm(p-Cl), CuIm(p-Br), and nickel Schiff base, NiIm(p-Cl)), in dichloromethane solvent. Conversion of the four-coordinated ZnT( m-X)PP to the five-coordinated species is followed and isosbestic behavior is exhibited in the region among 450 and 700 run. The reaction of a copper(Ⅱ) or nickel(Ⅱ) imidazolate Schiff base with ZnT(m-X)PP results in the formation of an imidazolate bridged heterobinuclear complex. The stoichiometric number is unity for all axial ligands. The equilibrium constants were determined using the β band of ZnT( m-X)-PP in the 293-308 K range by the method of Rose and Drago. It increases with decrease in temperature, and △H0 < 0, △S0 < 0. The stronger the nucleophilic ability of the axial  相似文献   

5.
The diamagnetic dioxomolybdenum(VI) complex [(MoO2)2(CH2L)(H2O)2]H2O (1) has been isolated in solid state from reaction of MoO2(acac)2 with bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) in 3:1 molar ratio in ethanol at higher temperature. The reaction of the complex (1) with electron donor bases gives diamagnetic molybdenum(VI) complexes having composition [Mo2O5(CH2LH2)]·2A·2H2O (where A = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), 4-picoline (4-pic, 5)). Further, when the complex (1) is allowed to react with protonic bases such as isonicotinoylhydrazine (inhH3) and salicyloylhydrazine (slhH3), reduction of molybdenum(VI) centre occurs leading to isolation of homobimetallic molybdenum(V) complexes [Mo2(CH2L)(inh)2(H2O)2] (6) and [Mo2(CH2L)(slh)2] (7), respectively. The composition of the complexes has been established by analytical, thermo-analytical and molecular weight data. The structure of the molybdenum(VI) complexes (1)–(5) has been established by electronic, IR, 1H NMR and 13C NMR spectral studies while those of the complexes (6) and (7) by magnetic moment, electronic, IR and EPR spectral studies. The dihydrazone is coordinated to the metal centres in staggered configuration in complex (1) while in anti-cis configuration in complexes (2)–(7). The complexes (6) and (7) possess magnetic moment of 2.95 and 3.06 BM, respectively, indicating presence of two magnetic centre in the complexes per molecule each with one unpaired electron on each metal centre without any metal–metal interaction. The electronic spectra of the complexes are dominated by strong charge transfer bands. All of the complexes involve six coordinated molybdenum centre with octahedral arrangement of donor atoms except in the complex (6), in which the molybdenum centre has rhombic arrangement of ligand donor atoms. The probable mechanism for generation of oxo-group in the complexes (2)–(5) involving coordinated water molecule has been proposed.  相似文献   

6.
Treatment of the molybdenum tetracarbonyl complexes of [Mo(CO)4L2] (L2=pyridyl amine Schiff base ligands) with allyl chloride in refluxing THF afforded η3-allyl complexes [MoCl(CO)2L23-allyl)] (1-9). These complexes have been characterised by various techniques including 1H-NMR, IR and FABMS spectroscopies and the single crystal X-ray structure determinations of the complexes [MoCl(CO)2{N(C6H4-2-OMe)C(Me)C5H4N}(η3-C3H5)] (3) and [MoCl(CO)2{N(Me)C(Ph)C5H4N}(η3-C3H5)] (4).  相似文献   

7.
The binuclear vanadyl(ii) complexes [(VO)2·2Py·2EtOH]·mH2O with acyldihydrazones of salicylaldehyde (H4L) and dicarboxylic acids were synthesized and studied. In these complexes, two chelate vanadyl(ii) complexes with the tridentate bicyclic ligands are linked to each other by the polymethylene bridges —(CH2) n — of different lengths varying from one to four units. The ESR spectra of solutions of these complexes, unlike those of analogous copper(ii) complexes, have an isotropic signal with an eight-line hyperfine structure (g = 1.972, a V = 93·10–4 cm–1) typical of monomeric vanadyl complexes, which indicates that no exchange interactions occur between the paramagnetic centers through the polymethylene chain.  相似文献   

8.
A novel 14-membered macrocyclic Schiff base derived from 3-cinnamalideneacetoacetanilide and o-phenylenediamine acts as a tetradentate and strongly conjugated ligand to form a cationic solid complex with CuCl2/NiCl2/CoCl2/ZnCl2. The ligand and the complexes were characterized by the usual spectral and analytical techniques. The main i.r. band of the macrocyclic Schiff base was compared to that of its metal complexes. The C=N bands are shifted to the lower wave number. The cyclic voltammogram of the copper complex shows that the macrocyclic ligand is able to stabilize the copper(III) oxidation state. The e.s.r. spectra of the copper complex in DMSO solution at room temperature and liquid N2 temperature were recorded and their salient features thoroughly discussed. The antimicrobial screening tests were also recorded and gave good results in the presence of metal ions in the ligand system.  相似文献   

9.
Until now, although there are many examples of studying the magnetic properties of Schiff base binuclear lanthanide complexes, the relationship between the structure and magnetic properties of the complexes still is worth further investigation in order to improve the magnetic properties of Schiff base lanthanide complexes. In this work, we successfully obtained two series of binuclear Ln complexes by in situ reaction of 4-diethylaminosalicylaldehyde, benzoic hydrazide and different lanthanide salts at 80°C under solvothermal conditions, namely, [Ln2(L)3(NO3)3]·CH3CN·CH3OH·H2O [Ln = Dy ( 1 ), Ho ( 2 ), Gd ( 3 ) L = deprotonated 4-diethylamino salicylaldehyde benzoylhydrazine], [Ln2(L)4(CH3COO)]CH3COO·CH3CN [Ln = Dy ( 4 ), Ho ( 5 ), Gd ( 6 )]. The complex 1 contains three Schiff base ligands L, two Dy (III) ions, and three NO3. The ligand H1L is formed by in situ Schiff base reaction with 4-diethylaminosalicylaldehyde and benzoic hydrazide with the participation of Ln (NO3)3. When replacing Ln (NO3)3 with Ln (OAc)3, obtained three μ2-OAc bridged binuclear Ln (III) complexes. The magnetic study showed that complex 4 exhibits field-induced single-molecule magnet (SMM) behavior while complex 1 does not show any SMMs behavior. In addition, we have studied the magnetocaloric effect of complexes 3 and 6 , their maximum −ΔSm values are 21.37 J kg−1 K−1 and 15.32 J kg−1 K−1, respectively, under ΔH = 7 T and T = 2 K.  相似文献   

10.
《中国化学会会志》2017,64(12):1524-1531
New complexes of nickel(II) and palladium(II) were synthesized using the ferrocenyl imine ligand, which was formed by the condensation of 2‐aminothiophenol and acetylferrocene. This bidentate Schiff base ligand was coordinated to the metal ions through the NS donor atoms. Monomeric complexes of nickel(II) and palladium(II) were synthesized by the reactions of the Schiff base ligand with nickel(II) and palladium(II) chloride in a 2:1 M ratio. In these complexes, the thiol group was deprotonated and coordinated to the metals. The molar conductivity values of the complexes in DMSO showed the presence of non‐electrolyte species. The fluorescence characteristics of the Schiff base ligand and its complexes were studied in DMSO. The synthesized complexes were characterized by FT‐IR, 1H NMR, UV–vis spectroscopy, elemental analysis, and conductometry. Furthermore, the binding interactions of the complexes with DNA were investigated by electronic absorption spectroscopy, and the intrinsic binding constant (K b) was calculated. Moreover, viscosity and melting temperature (T m) were investigated in order to further explore the nature of interactions between the complexes and DNA.  相似文献   

11.
The reactions of ethyldiphenylphosphine with a number of cis-dioxomolybdenum(VI) Schiff base coordination complexes are described. These molybdenum complexes incorporate tridentate Schiff base ligands obtained from the condensation of 5-X-salicylaldehyde (X = Cl, Br, H, CH3O) with o-aminobenzenethiol. Oxomolybdenum(IV) Schiff base complexes were observed as products of the reaction of these Mo(VI) complexes with PEtPh2. The kinetics for these reactions were followed spectrophotometrically and the applicable rate law is ? d[MoO2L]/dt = k1[MoO2L][PEtPh2]. The k1's were shown to vary systematically as the X-substituent on the ligand was changed. For MoO2(5-X-SSP), the specific rate constants at 30°C span the range from 19.6 × 10?4 M?1 sec?1 (X = Br) to 8.4 × 10?4 M?1 sec?1 (X = CH3O). It was also observed that a correlation exists between the cathodic reduction potentials (Epc) and the k1's within the series. The rate of reaction of MoO2(5-X-SSP) with PEtPh2 was altered and systematically controlled through ligand design.  相似文献   

12.
Organotin(IV) Schiff base complexes of the type (L)SnR2 [where R?CH3, C6H5 or CH2CH2CO2 CH3], (LH)Sn(C6H5)3 and (L)SnCl(CH2CH2CO2 CH3) [where LH2?2-N-salicylideneimino-2-methyl-1-propanol, derived from the condensation of salicylaldehyde and 2-amino-2-methyl-1-propanol] have been prepared and characterized on the basis of their elemental analyses, IR, 1H, 13C and 119Sn NMR studies. In these mononuclear complexes the Schiff base acts either as a dianionic tridentate or as a monobasic bidentate moiety by coordinating through an alkoxy group, an azomethine nitrogen and a phenoxide ion to tin. Sulphur dioxide inserts in the tin–methyl/–phenyl bond in the above Schiff base complexes to give tin–O–sulphinates of formulae (L)RSn(SO2R) and (LH)(C6H5)2Sn(SO2C6H5).  相似文献   

13.
Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Co(II) and Zn(II) have been synthesised using the Schiff base formed by the condensation of acetylacetone andp-anisidine. Microanalysis, molar conductance, magnetic susceptibility, IR, UV-Vis,1 H NMR, CV and EPR studies have been carried out to determine the structure of the complexes. From the data, it is found that all the complexes possess square-planar geometry. The EPR spectrum of the copper complex in DMSO at 300 K and 77 K was recorded and its salient features are reported. All the title complexes were screened for antimicrobial activity by the well diffusion technique using DMSO as solvent. The minimum inhibitory concentration (MIC) values were calculated at 37°C for a period of 24 h. It has been found that all the complexes are antimicrobially active and show higher activity than the free ligand.  相似文献   

14.
The asymmetric molybdenum(VI) dioxo complexes of the bis(phenolate) ligands 1,4‐bis(2‐hydroxybenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐methylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐dimethylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐di‐tert‐butylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐flurobenzyl)‐1,4‐diazepane, and 1,4‐bis(2‐hydroxy‐4‐chlorobenzyl)‐1,4‐diazepane (H2(L1)–H2(L6), respectively) have been isolated and studied as functional models for molybdenum oxotransferase enzymes. These complexes have been characterized as asymmetric complexes of type [MoO2(L)] 1–6 by using NMR spectroscopy, mass spectrometry, elemental analysis, and electrochemical methods. The molecular structures of [MoO2(L)] 1–4 have been successfully determined by single‐crystal X‐ray diffraction analyses, which show them to exhibit a distorted octahedral coordination geometry around molybdenum(VI) in an asymmetrical cis‐β configuration. The Mo? Ooxo bond lengths differ only by ≈0.01 Å. Complexes 1 , 2 , 5 , and 6 exhibit two successive MoVI/MoV (E1/2, ?1.141 to ?1.848 V) and MoV/MoIV (E1/2, ?1.531 to ?2.114 V) redox processes. However, only the MoVI/MoV redox couple was observed for 3 and 4 , suggesting that the subsequent reduction of the molybdenum(V) species is difficult. Complexes 1 , 2 , 5 , and 6 elicit efficient catalytic oxygen‐atom transfer (OAT) from dimethylsulfoxide (DMSO) to PMe3 at 65 °C at a significantly faster rate than the symmetric molybdenum(VI) complexes of the analogous linear bis(phenolate) ligands known so far to exhibit OAT reactions at a higher temperature (130 °C). However, complexes 3 and 4 fail to perform the OAT reaction from DMSO to PMe3 at 65 °C. DFT/B3LYP calculations on the OAT mechanism reveal a strong trans effect.  相似文献   

15.
Tetradentate N4-type organic ligands containing two 5-(2-pyridylmethylidene)-2-thio-3,5-dihydro-4H-imidazol-4-one fragments linked by two-, four-, or six-carbon polymethylene bridges between the sulfur atoms were synthesized. Mono- and dinuclear complexes of these ligands with copper(II) chloride, as well as with copper(I) and copper(II) perchlorates, were prepared. The structure of the coordination compound (5Z,5′Z)-2,2′-(butane-1,2-diyl-disulfanyldiyl)bis-5-(2-pyridylmethylidene)-3-phenyl-3,5-dihydro-4H-imidazol-4-one with copper(I) perchlorate was established by X-ray diffraction. The copper atom in this complex is in a distorted tetrahedral coordination formed by four nitrogen atoms of two imidazole and two pyridine rings. The perchlorate anion is located in the outer sphere of the complex and is not involved in the coordination with the copper ion. The electrochemical study of the ligands and the complexes was carried out by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes under study occurs at the metal atom. The length of the polymethylene bridge in the ligand has only a slight effect on the redox properties of the ligands and the complexes.  相似文献   

16.
Tetradentate open-chain Schiff base N2O2-ligands of acacen, benacen or salen type and fluoride anions F? coordinate to the iron(III) central atom in methanol forming the complexes [Fe(N2O2)(CH3OH)F]. The complexes do not undergo spontaneous redox changes when kept in the dark. Their irradiation into intraligand or ligand-to-metal charge transfer bands causes the photoreduction of Fe(III) to Fe(II) associated with oxidation of metanol to its radical CH2OH. The final products of the primary photoredox and secondary dark redox processes, Fe(II) and CH2O, are formed in a 2:1 molar ratio. The efficiency of the axial methanol ligand photooxidation is strongly wavelength dependent and influenced by the peripheral groups R of the tetradentate ligands  相似文献   

17.
Cu(II) complexes have been synthesized from the Schiff base ligands derived from furfurlyidene-4-aminoantipyrine and aniline (L1)/p-nitroaniline (L2)/p-hydroxyaniline (L3). They were characterized using analytical and spectral techniques. All the Cu(II) complexes exhibit square planar geometry. The X-band ESR spectra of the copper complexes in DMSO solution at 300 and 77 K were recorded and their salient features are reported. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species, Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by serial dilution method. A comparative study of inhibition values of the Schiff base ligands and their complexes indicate that the complexes exhibit higher antimicrobial activity than the Schiff base ligands. Superoxide dismutase and reducing power activities of the copper complexes have also been studied. Depending on the molecular structure, the [CuL2(OAc)2] complex possess promising SOD mimetic activities.  相似文献   

18.
The electrochemical reaction of the bis‐bidentate Schiff base H2FTs [N, N′‐bis(2‐tosylaminobenzylidene)‐1, 2‐diaminobencene] with cobalt, nickel, copper, zinc and cadmium, lead to the isolation of neutral [M(FTs)] complexes. All of them were characterized by elemental analyses, mass spectrometry, IR and 1H NMR spectroscopy and magnetic measurements, where appropriate. Recrystallization of the nickel complex yields single crystals of [Ni(FTs)]·CH3CN ( 1 ). The x‐ray characterization shows a distorted square‐planar environment for the nickel atom, with the Schiff base acting as a tetradentate N4 donor. Complex 1 can be described as a mononuclear single‐stranded helical compound, with spontaneous resolution of the P enantiomer upon crystallisation.  相似文献   

19.
We have reported herein the synthesis of three new Cu(II) complexes of tri- and tetradentate Schiff base ligands containing N3 or N4 donor set along with terminal NNN or SCN ligands: [L1Cu(NCS)]ClO4 (1), [L2Cu(NCS)2] (2) and [L3Cu(NNN)]ClO4 (3) [L1 = NC5H4C(CH3)=N(CH2)3N=C(CH3)C5H4N, L2= Me2N–(CH2)3–N=C(CH3)C5H4N and L3 = NC5H4CH=N–(CH2)4–N=CHC5H4N]. The complexes have been systematically characterised by elemental, spectroscopic and electrochemical techniques. Antimicrobial activities of the Schiff base ligands and their metal complexes have been studied using the disc diffusion method on the strains of Candida tropicalis and Bacillus megaterium. Structures of all the complexes have been unequivocally established from single crystal X-ray diffraction analyses that show the monomeric units containing a five-coordinated copper center in highly distorted square pyramidal geometry with thiocyanate or azide anion coordinated as terminal ligand. The complexes 1 and 3 crystallise in monoclinic (P21/c) and 2 in triclinic (P-1) space group, respectively.  相似文献   

20.
The Schiff bases [H2SBSaD], [H2SBVD] and [H2SBND], derived by the condensation of S-benzyldithiocarbazate and salicylaldehyde, 2-hydroxy-3-methoxybenzaldehyde and 2-hydroxy-1-naphthaldehyde respectively, react with diestertin dichlorides, R2SnCl2 [R=? CH2CH2CO2CH3, ? CH2CH2CO2C2H5 or ? CH2CH2CO2C4H9] in 1:1 molar proportion to yield chlorine-substituted complexes of the type R2Sn(Schiff base), the base being tridentate. The complexes are characterized on the basis of their elemental analyses, IR and 1H NMR spectral studies. The 13C and 119Sn NMR and the tin-carbon coupling constant data reveal the structures of the complexes to be octahedral with trans ester grouping, and bidentate ester linkages. The pentacoordinated complex (CH3)2Sn(SBSaD) was prepared by the reaction of dimethyltin oxide with H2SBSaD in equimolar proportions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号