首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
万谦  邹曦露 《波谱学杂志》1992,9(2):205-208
描述了一种延长EPR波谱仪中速调管使用寿命的方法.根据这种方法,只要正确地调谐微波桥的工作状态和适当地调整功率电平器的功率校正电平.即使对于已经严重老化的速调管仍然可以继续使用一段时间,维持仪器的正常运行.  相似文献   

2.
The set-up of a new microwave bridge for a 95 GHz pulse EPR spectrometer is described. The virtues of the bridge are its simple and flexible design and its relatively high output power (0.7 W) that generates pi pulses of 25 ns and a microwave field, B(1)=0.71 mT. Such a high B(1) enhances considerably the sensitivity of high field double electron-electron resonance (DEER) measurements for distance determination, as we demonstrate on a nitroxide biradical with an interspin distance of 3.6 nm. Moreover, it allowed us to carry out HYSCORE (hyperfine sublevel-correlation) experiments at 95 GHz, observing nuclear modulation frequencies of 14N and 17O as high as 40 MHz. This opens a new window for the observation of relatively large hyperfine couplings, yet not resolved in the EPR spectrum, that are difficult to observe with HYSCORE carried out at conventional X-band frequencies. The correlations provided by the HYSCORE spectra are most important for signal assignment, and the improved resolution due to the two dimensional character of the experiment provides 14N quadrupolar splittings.  相似文献   

3.
The design and performance of the first commercial 94 GHz continuous-wave (CW-)/Fourier transform (FT-) EPR and ENDOR spectrometer are described. The spectrometer design is based on a heterodyne microwave bridge using an X-band intermediate frequency (IF), a hybrid magnet system, a variable-temperature, top-loading TeraFlex probehead with a TE011 cavity as well as the ELEXSYS-line digital electronics and the Xepr software package. The W-band bridge can be driven by a CW- or pulse-IF unit and delivers a microwave power of 5 mW at 94 GHz. In pulse mode the power is sufficient for a π/2 pulse of 100 ns at a resonatorQ-value of 3000. The magnet system consists of a 6 T split-coil superconducting magnet and a water-cooled room-temperature coil. The main coil can be swept over the full range from 0 to 6 T. The room-temperature coil has a 800 G sweep range around the persistent field of the main magnet. The ENDOR probe features a tuned circuit for1H nuclei allowing an RF π-pulse of 8 μs with a 200 W amplifier. A broad-band setup is used for other nuclei. The E680 FT-EPR system utilizes the PatternJet pulse programmer and the SpecJet high-speed transient signal averager. The concerted action of these two devices results in a pulse EPR sensitivity equal or higher than in CW-EPR. Selected examples indicating the performance of the 94 GHz CW/FT-EPR and ENDOR systems are shown.  相似文献   

4.
A spectrometer specifically designed for systematic studies of the spin dynamics underlying Dynamic Nuclear Polarization (DNP) in solids at low temperatures is described. The spectrometer functions as a fully operational NMR spectrometer (144 MHz) and pulse EPR spectrometer (95 GHz) with a microwave (MW) power of up to 300 mW at the sample position, generating a MW B(1) field as high as 800 KHz. The combined NMR/EPR probe comprises of an open-structure horn-reflector configuration that functions as a low Q EPR cavity and an RF coil that can accommodate a 30-50 μl sample tube. The performance of the spectrometer is demonstrated through some basic pulsed EPR experiments, such as echo-detected EPR, saturation recovery and nutation measurements, that enable quantification of the actual intensity of MW irradiation at the position of the sample. In addition, DNP enhanced NMR signals of samples containing TEMPO and trityl are followed as a function of the MW frequency. Buildup curves of the nuclear polarization are recorded as a function of the microwave irradiation time period at different temperatures and for different MW powers.  相似文献   

5.
An electron paramagnetic resonance (EPR) spectrometer is described which allows for continuous-wave and pulsed EPR experiments at 275 GHz (wavelength 1.1 mm). The related magnetic field of 9.9 T for g approximately 2 is supplied by a superconducting solenoid. The microwave bridge employs quasi-optical as well as conventional waveguide components. A cylindrical, single-mode cavity provides a high filling factor and a high sensitivity for EPR detection. Even with the available microwave power of 1 mW incident at the cavity a high microwave magnetic field B1 is obtained of about 0.1 mT which permits pi/2-pulses as short as 100 ns. The performance of the spectrometer is illustrated with the help of spectra taken with several samples.  相似文献   

6.
在自主研制的动态核极化(Dynamic Nuclear Polarization,DNP)分子影像装置的基础上,提出了一种集DNP和电子顺磁共振(Electron Paramagnetic Resonance,EPR)于一体的多功能谱仪,并对其中的关键部件之一--微波桥进行了设计.微波桥的引入,实现了DNP微波发射机的集成化,以及在DNP谱仪基础上的EPR功能扩展.通过结构设计、电路仿真及系统测试,完成了高频谱纯度、高动态范围的微波发射机以及低噪声系数的微波检测系统的设计与制作.并通过DNP增强实验以及连续波EPR实验对微波桥的性能进行了验证.  相似文献   

7.
The replacement of the commonly used analog phase-sensitive detection (PSD) by digital PSD for demodulation of electron paramagnetic resonance (EPR) signals is suggested for upgrading of an out-of-date EPR spectrometer. Connection of the microwave bridge output to a fast analog-digital converter (ADC) eliminates some of the spectrometer’s components: the electronics responsible for analog PSD, ADC for sampling of demodulated signals, and a computer, as well as the usage of some of the spectrometer’s settings. The spectrometer is reduced to a magnet, microwave bridge, and personal computer containing an ADC board. EPR signals digitized for a set of magnetic field positions form a two-dimensional array which is stored in a personal computer. Demodulation and filtering are done numerically to produce a conventional EPR spectrum. In comparison with analog PSD, this numerical approach does not eliminate the out-of-phase component of the signal and the signals at the higher harmonics of the modulation frequency. The details of modernizing the Bruker ER200E SRC EPR spectrometer are discussed to demonstrate these and other advantages of digital demodulation.  相似文献   

8.
A versatile high-power pulse Q-band EPR spectrometer operating at 34.5--35.5 GHz and in a temperature range of 4--300 K is described. The spectrometer allows one to perform one- and two-dimensional multifrequency pulse EPR and pulse ENDOR experiments, as well as continuous wave experiments. It is equipped with two microwave sources and four microwave channels to generate pulse sequences with different amplitudes, phases, and carrier frequencies. A microwave pulse power of up to 100 W is available. Two channels form radiofrequency pulses with adjustable phases for ENDOR experiments. The spectrometer performance is demonstrated by single crystal pulse ENDOR experiments on a copper complex. A HYSCORE experiment demonstrates that the advantages of high-field EPR and correlation spectroscopy can be combined and exploited at Q-band. Furthermore, we illustrate how this combination can be used in cases where the HYSCORE experiment is no longer effective at 35 GHz because of the shallow modulation depth. Even in cases where the echo modulation is virtually absent in the HYSCORE experiment at Q-band, matched microwave pulses allow one to get HYSCORE spectra with a signal-to-noise ratio as good as at X-band. Finally, it is shown that the high microwave power, the short pulses, and the broad resonator bandwidth make the spectrometer well suited to Fourier transform EPR experiments.  相似文献   

9.
Stochastic excitation with a full-width-half-maximum bandwidth of 250 MHz was used to perform Fourier-transform (FT) high-field/high-frequency electron paramagnetic resonance (EPR) at 3.4T/95 GHz (W-band). Thereby, the required microwave peak power is reduced by a factor of tau(p)/T1 as compared to equivalent pulsed FT EPR in which the spin system with spin-lattice relaxation time T1 is excited by a single microwave pulse of length tau(p). Stochastic EPR is particularly interesting under high-field/high-frequency conditions, because the limited output power of mm microwave sources, amplifiers, and mixers makes pulse FT EPR in that frequency domain impossible, at least for the near future. On the other hand, FT spectroscopy offers several advantages compared to field-swept magnetic resonance methods, as is demonstrated by its success in NMR and X-band EPR. In this paper we describe a novel stochastic W-band microwave bridge including a bimodal induction mode transmission resonator that serves for decoupling the microwave excitation and signal detection. We report first EPR measurements and discuss experimental difficulties as well as achieved sensitivity. Moreover, we discuss future improvements and the possibility for an application of stochastic W-band FT EPR to transient signals such as those of photoexcited radical pairs in photosynthetic reaction centers.  相似文献   

10.
Design strategies, system configuration, and operation of a dual-channel data acquisition system for a radiofrequency (RF) time-domain electron paramagnetic resonance (EPR) spectrometer/imager operating at 300 MHz are described. This system wasconfigured to incorporate high-speed analog-to-digital conversion (ADC) and summation capabilities with both internal and external triggering via GPIB interface. The sampling rate of the ADC is programmable up to a maximum of 1 GS/s when operating in a dual-channel mode or 2 GS/s when the EPR data are collected in a single-channel mode. By using high-speed flash ADCs, a pipelined 8-bit adder, and a 24-bit accumulator, a repetition rate of 230 kHz is realized to sum FIDs of 4096 points. The record length is programmable up to a maximum of 8K points and a large number of FIDs (2(24)) can be summed without overflow before the data can be transferred to a host computer via GPIB interface for further processing. The data acquisition system can operate in a two-channel (quadrature) receiver mode for the conventional mixing to baseband. For detection using the single-channel mode, the resonance signals around the center frequency of 300 MHz were mixed with a synchronized local oscillator of appropriate frequency leading to an intermediate frequency (IF) which is sampled at a rate of 2 GS/s. Comparison of quadrature-mode and an IF-mode operation for EPR detection is presented by studying the FID signal intensity across a bandwidth of 10 MHz and as a function of transmit RF power. Imaging of large-sized phantoms accommodated in appropriately sized resonators indicates that IF-mode operation can be used to obtain distortion-free images in resonators of size 50 mm diameter and 50 mm length.  相似文献   

11.
Loop-gap resonator (LGR) technology has been extended to W-band (94GHz). One output of a multiarm Q-band (35GHz) EPR bridge was translated to W-band for sample irradiation by mixing with 59 GHz; similarly, the EPR signal was translated back to Q-band for detection. A cavity resonant in the cylindrical TE011 mode suitable for use with 100 kHz field modulation has also been developed. Results using microwave frequency modulation (FM) at 50 kHz as an alternative to magnetic field modulation are described. FM was accomplished by modulating a varactor coupled to the 59 GHz oscillator. A spin-label study of sensitivity was performed under conditions of overmodulation and gamma2H1(2)T1T2<1. EPR spectra were obtained, both absorption and dispersion, by lock-in detection at the fundamental modulation frequency (50 kHz), and also at the second and third harmonics (100 and 150 kHz). Source noise was deleterious in first harmonic spectra, but was very low in second and third harmonic spectra. First harmonic microwave FM was transferred to microwave modulation at second and third harmonics by the spins, thus satisfying the "transfer of modulation" principle. The loaded Q-value of the LGR with sample was 90 (i.e., a bandwidth between 3 dB points of about 1 GHz), the resonator efficiency parameter was calculated to be 9.3 G at one W incident power, and the frequency deviation was 11.3 MHz p-p, which is equivalent to a field modulation amplitude of 4 G. W-band EPR using an LGR is a favorable configuration for microwave FM experiments.  相似文献   

12.
A computer-controlled X-band time domain electron paramagnetic resonance (EPR) spectrometer, with a time resolution of the order of 0.5μsec, has been constructed with many of the crucial microwave components designed and fabricated by the Microwave Engineering Group of TIFR. The spectrometer operates either in a microwave power pulsed mode for determination of spin-lattice relaxation times by the saturation recovery technique or in the kinetic mode for determination of the time dependence of EPR signal after laser excitation. It has an automatic frequency control, an automatic phase control and, most importantly, a field-frequency lock which ensures good stability of the EPR line positions enabling signal averaging for extended periods. The constructional details of the spectrometer and its performance in both the modes are described here by reporting results on certain typical systems.  相似文献   

13.
A frequency modulation (FM) method was developed to measure electron paramagnetic resonance (EPR) absorption. The first-derivative spectrum of 1,1-diphenyl-2-picrylhydrazyl (DPPH) powder was measured with this FM method. Frequency modulation of up to 1.6 MHz (peak-to-peak) was achieved at a microwave carrier frequency of 1.1 GHz. This corresponds to a magnetic field modulation of 57microT (peak-to-peak) at 40.3 mT. By using a tunable microwave resonator and automatic control systems, we achieved a practical continuous-wave (CW) EPR spectrometer that incorporates the FM method. In the present experiments, the EPR signal intensity was proportional to the magnitude of frequency modulation. The background signal at the modulation frequency (1 kHz) for EPR detection was also proportional to the magnitude of frequency modulation. An automatic matching control (AMC) system reduced the amplitude of noise in microwave detection and improved the baseline stability. Distortion of the spectral lineshape was seen when the spectrometer settings were not appropriate, e.g., with a lack of the open-loop gain in automatic tuning control (ATC). FM is an alternative to field modulation when the side-effect of field modulation is detrimental for EPR detection. The present spectroscopic technique based on the FM scheme is useful for measuring the first derivative with respect to the microwave frequency in investigations of electron-spin-related phenomena.  相似文献   

14.
Time-resolved measurements of the microwave field effect using optically detected EPR (ODEPR) have demonstrated that the amplitude and lifetime of the slow component of fluorescence are additionally reduced by an external microwave field, at a microwave frequency of 9400 MHz, a constant magnetic field of 0.3295 T and an oxalylfluoride pressure of 30 mTorr. This is accompanied by an increase in the fast component amplitude, at a constant decay rate of (2.36 × 0.19) 107 s?1. The fluorescence intensity was found to decrease, and phosphorescence intensity to increase, with subsequent saturation at higher microwave intensities. The experimental data are interpreted using the indirect mechanism theory in the limit of low-level density.  相似文献   

15.
The rotational spectrum of dimethyl methylphosphonate (DMMP) has been studied using a pulsed molecular beam Fourier transform microwave spectrometer. The spectrum is complicated by the internal rotation motions of the three methyl tops in the molecule as well as an interconversion motion of the two methoxy groups. Here, we present the microwave spectrum, the ab initio calculations, and the assignment of the rigid-rotor A-symmetry state of the molecule. The rotational constants for this state are A=2828.753(2) MHz, B=1972.360(3) MHz, and C=1614.267(2) MHz. In the following paper, a group theoretical analysis is developed for DMMP. The observed conformation of the molecule has no point-group symmetry and all three electric-dipole selection rules are active, with c-type transitions being the most intense. Ab initio calculations were carried out at both the Hartree-Fock 6-31G* and MP2/6-311G* levels of theory. These calculations indicate that two low-energy conformations are possible separated by energies of less than 170 cm−1. Furthermore, the calculated lowest energy conformer is in agreement with the one observed experimentally. The relative energies of the two low-energy conformers rise from 34 cm−1 at the HF level to 170 cm−1 at the MP2 level.  相似文献   

16.
Line shapes of the hyperfine NO2 26(1,25)←25(2,24) rotational transition have been measured at pressures below 3 torr with a bridge spectrometer originally designed for direct absolute absorption studies. The multiplet consists of six lines with δFJN=1 in the vicinity of 93,445 MHz. The same line-broadening parameter of 3.7 MHz/torr and the same maximum absorption of 1.8×10-5 cm-1 have been found for all 6 lines. The maximum absorption of the strongly overlapped multiplet at a pressure of 10 torr was measured to be 1.06×10-4 cm-1, in good agreement with the theoretical value. The interference effect of the overlapping lines turns out to be below ?10%, so that a simple superposition of lorentzian shapes is a good approximation for this case. The remaining difference can be compensated for by the introduction of an overlap parameter for each line.  相似文献   

17.
We describe a magnetic resonance spectrometer capable of EPR, dynamic nuclear polarization, and multinuclear high-resolution NMR. The operating field is 1.4 T, corresponding to Larmor frequencies of 40 GHz and 60 MHz for electrons and protons, respectively. The microwave side of the probe is based on a Fabry-Perot resonator (FPR ), an open structure that enhances power-to-field conversion for efficient saturation of the EPR for dynamic polarization, and further permits in situ detection for EPR. This allows the external field to be set at, rather than scanned for, the optimal DNP position. Moreover, we have found that adjustments necessary for maximizing DNP may be done via optimization of the EPR signal, a feature of particular significance for samples which exhibit NMR signals on the borderline of detectability, i.e., samples for which DNP is of special importance. 'H and '3C polarization enhancements achieved using the FPR are compared with devices used by others, in particular the horn /reflector system used by Wind and co-workers. Direct '3C enhancements large enough to detect 2.5 x 10'6 spins in (fluoranthenyl)2 PF6 after a single one-second polarization period have been obtained, and the first high-field 'Li DNP results are also presented.  相似文献   

18.
In the present study, resolved OD EPR spectra were measured for the 431, 423, and 413 levels of the Ã1 Au 00 vibronic state. Values of the fine and hyperfine constants were estimated from an analysis of these spectra for the triplet rotational levels, coupled by the intramolecular interactions with the singlet levels studied. It was shown that the microwave power dependence differs significantly for different lines of the OD EPR spectrum. This difference can be explained by a model where the microwave field saturation effect is observed for different OD EPR lines at different power values of the microwave field. The decay profile can be fitted by a biexponential function in the presence of both magnetic and microwave fields. The observed data were analysed using the electron and nuclear spin decoupling mechanism in the limit of low level density.  相似文献   

19.
A wide-band submillimetre EPR spectrometer is described. A set of tunable backward wave oscillators and quasioptic lens system enables one to operate in the frequency region 79–535 GHz. The sample is placed in a magnetic field of up to 1 T at 4.2 K. The spectrometer is intended for the investigation of EPR spectra of rare-earth ions in solids with zero field splittings of the ground states near the frequency of operation and/or electron systems with ag-factor exceeding 5. The spectrometer’s capabilities are demonstrated with an investigation of the EPR spectra of Dy2+ and Dy3+ ions in CaF2. As a result the exact value of the zero field splitting between the ground Γ8 quartet and the first exited Γ7 doublet of Dy3+ in CaF2, Δ=257±0.5 GHz, has been measured directly.  相似文献   

20.
In order to raise the sensitivity of microwave electron-paramagnetic-resonance (EPR) spectrometers, it is proposed to use a piece of ferroelectric material as an additional resonator. The method has been tested using the RE-1307 microwave EPR spectrometer and a pulsed microwave spectrometer. The possibility of raising the signal-to-noise ratio when using ferroelectric resonators of rectangular-parallelepiped and spherical shape has been considered. For a potassium-tantalate ferroelectric resonator of rectangular-parallelepiped shape, the signal-to-noise ratio has been raised by a factor of 16 at 331 K and by a factor of 10 at 292 K. In the pulse experiment, the presence of the ferroelectric resonator permits a reduction in microwave power, required for sample saturation, by a factor of 50 at 50 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号