首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni−N4 and Fe−N4 pair sites is designed for boosting gas-solid CO2 reduction with H2O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)−N−C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 μmol g−1 h−1), CH4 (135.35 μmol g−1 h−1) and CH3OH (59.81 μmol g−1 h−1), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe−N−C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)−N−C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni−N−N−Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.  相似文献   

2.
Reduced CO2 species are key intermediates in a variety of natural and synthetic processes. In the majority of systems, however, they elude isolation or characterisation owing to high reactivity or limited accessibility (heterogeneous systems), and their formulations thus often remain uncertain or are based on calculations only. We herein report on a Ni?CO22? complex that is unique in many ways. While its structural and electronic features help understand the CO2‐bound state in Ni,Fe carbon monoxide dehydrogenases, its reactivity sheds light on how CO2 can be converted into CO/CO32? by nickel complexes. In addition, the complex was generated by a rare example of formate β‐deprotonation, a mechanistic step relevant to the nickel‐catalysed conversion of HxCOyz? at electrodes and formate oxidation in formate dehydrogenases.  相似文献   

3.
Formate and carbonate complexes and bridging and linear methoxy groups were detected on the surfaces of CeO2 and 5.0% Cu/CeO2 under the reaction conditions of methanol conversion using IR spectroscopy. The reaction products were H2, methyl formate, CO, CO2, and H2O. The bridging and linear methoxy groups were the sources of formation of bi- and monodentate formate complexes, respectively. Methyl formate was formed as a result of the interaction of the linear methoxy group and the formate complex. The study demonstrated that the recombination of hydrogen atoms on copper clusters and the decomposition of methyl formate were the main reactions of hydrogen formation. Formate and carbonate complexes were the source of CO2 formation in the gas phase, and the decomposition of methyl formate was the source of CO. It was found that the addition of water vapor to the reaction flow considerably decreased the rate of CO formation at a constant yield of hydrogen. The effects of water vapor and oxygen on the course of surface reactions and the formation of products are discussed. To explain the mechanism of methanol conversion, a scheme of surface reactions is proposed.  相似文献   

4.
Global warming, fossil fuel depletion and fuel price increases have motivated scientists to search for methods for the storage and reduction of the amount of greenhouse gases, especially CO2. The hydrogenation process has been introduced as an emerging method of CO2 capture and convertion into value-added products. In this study, new types of catalysts are introduced for CO2 hydrogenation and are compared based on catalytic activity and product selectivity. The physical properties of the samples are specified using BET. Iron catalysts supported on γ-Al2O3 with different metal promoters (X = Ni, K, Mn, Cu) are prepared through the impregnation method. Moreover, Fe–Ni catalysts supported on HZSM5-Al2O3 and Ce–Al2O3 are synthesized. Samples are reduced by pure H2 and involved in hydrogenation reaction in a fixed bed reactor (H2/CO2 = 3, total pressure = 10 MPa, temperature = 523 K, GHSV = 2000, 1250 nml/min). All catalysts provide high conversion in hydrogenation reactions and the results illustrate that the selectivity of light hydrocarbons is higher than that of methane and CO. It is found that Ni has a promoting effect on the conversion fluctuations throughout the reaction with 66.13% conversion. Using combined supported catalysts leads to enhancing catalytic performance. When Fe–Ni/γ–Al2O3—HZSM5 is utilized, CO2 conversion is 81.66% and the stability of the Fe–Ni catalyst supported on Al2O3 and Ce–Al2O3 furthey improves.  相似文献   

5.
The development of an efficient strategy for fabricating two-dimensional metal-organic framework (MOF) nanosheets with high yield and high stability is desirable. Herein, we demonstrate for the first time that large, single-layer 2D nickel-benzene dicarboxylate (Ni−BDC) MOF nanosheets can be fabricated with the assistance of supercritical (SC) CO2 in a pure aqueous system. Detailed experimental evidence reveals that the SC CO2 molecule can exchange with the lattice-coordinated H2O molecules, side-on coordinate with the metal Ni1 sites on the Ni−BDC surface, and finally break the interlayer hydrogen bond to exfoliate the bulk Ni−BDC into a 2D MOF. More importantly, a thin SC CO2 layer building up at the water−Ni−BDC interfaces can transform the pristine hydrophilic interface into a super-hydrophobic one. This super-hydrophobic layer at the water-MOF interface can effectively prevent dissociation, thus promoting the stability of Ni−BDC in aqueous system.  相似文献   

6.
Quantum chemistry calculations predict that besides the reported single metal anion Pt, Ni can also mediate the co-conversion of CO2 and CH4 to form [CH3−M(CO2)−H] complex, followed by transformation to C−C coupling product [H3CCOO−M−H] ( A ), hydrogenation products [H3C−M−OCOH] ( B ) and [H3C−M−COOH]. For Pd, a fourth product channel leading to PdCO2…CH4 becomes more competitive. For Ni, the feed order must be CO2 first, as the weaker donor-acceptor interaction between Ni and CH4 increases the C−H activation barrier, which is reduced by [Ni−CO2]. For Ni/Pt, the highly exothermic products A and B are similarly stable with submerged barrier that favors B . The smaller barrier difference between A and B for Ni suggests the C−C coupling product is more competitive in the presence of Ni than Pt. The charge redistribution from M is the driving force for product B channel. This study adds our understanding of single atomic anions to activate CH4 and CO2 simultaneously.  相似文献   

7.
CO2 is the main component of greenhouse gases and also an important carbon source. The hydrogenation of CO2 to methane using Ni-based catalysts can not only alleviate CO2 emissions but also obtain useful fuels. However, Ni-based catalysts face one major problem of the sintering of Ni nanoparticles in the process of CO2 methanation. Thus, this work has synthesized a series of efficient and robust nickel silicate catalysts (NiPS−X) with different nickel content derived from nickel phyllosilicate by the hydrothermal method. It was found that the Ni loading plays a critical role in the structure and catalytic performance of the NiPS−X catalysts. The catalytic performance gradually increases with the increase of Ni loading. In particular, the highly dispersed NiPS-1.6 catalyst with a high Ni loading of 34.3 wt% could obtain the CO2 conversion greater than 80%, and the methane selectivity was close to 100% for 48 h at 330 °C and the GHSV of 40,000 mL g−1 h−1. The excellent catalytic property can be assigned to the high dispersion of Ni nanoparticles and the strong interaction between the active component and the carrier, which is derived from a unique layered silicate structure with lots of nickel phyllosilicate and a large number of Lewis acid sites.  相似文献   

8.
Single-atom M−N2 (M=Fe, Co, Ni) catalysts exhibit high activity for CO2 reduction reaction (CO2RR). However, the CO2RR mechanism and the origin of activity at the single-atom sites remain unclear, which hinders the development of single-atom M−N2 catalysts. Here, using density functional theory calculations, we reveal intermediates-induced CO2RR activity at the single-atom M−N2 sites. At the M−N2 sites, the asymmetric *O*CO configuration tends to split into *CO and *OH intermediates. Intermediates become part of the active moiety to form M−(CO)N2 or M-(OH)N2 sites, which optimizes the adsorption of intermediates on the M sites. The maximum free energy differences along the optimal CO2RR pathway are 0.30, 0.54, and 0.28 eV for Fe−(OH)N2, Co−(CO)N2, and Ni−(OH)N2 sites respectively, which is lower than those of Fe−N2 (1.03 eV), Co−N2 (1.24 eV) and Ni−N2 (0.73 eV) sites. The intermediate modification can shift the d-band center of the spin-up (minority) state downward by regulating the charge distribution at the M sites, leading to less charge being accepted by the intermediates from the M sites. This work provides new insights into the understanding of the activity of single-atom M−N2 sites.  相似文献   

9.
It is demonstrated by in situ IR spectroscopy that, in methanol conversion on ZrO2 and 5% Cu/ZrO2 catalysts, methoxy groups are present on the catalyst surface, which result from O-H or C-O bond breaking in the methanol molecule. Two types of formate complexes, localized on ZrO2 and CuO, are also observed. The formate complexes form via the oxidative conversion of the methoxy groups. There are two types of linear methoxy groups. First-type linear methoxy groups condense with the formate complex located on CuO to yield methyl formate and then CO and H2. Second-type methoxy groups appear as intermediate products in the formation of dimethyl ether. The main hydrogen formation reactions are the recombination of hydrogen atoms (which result from the interconversion of surface complexes) on copper clusters and the decomposition of methyl formate. The source of CO2 in the gas phase is the formate complex, and the source of CO is methyl formate. The effect of water vapor and oxygen the surface reactions and product formation is discussed.  相似文献   

10.
Sulfite reductase (SiR) catalyzes a six electron and six proton reduction of sulfite to sulfide. Similarly to the cytochrome P450 (cytP450) family, the active site in SiR contains a (partially reduced) heme bound axially to a cysteinate ligand—though with an extra Fe4S4 cluster. Fe(III) SO2−, Fe(III) SOH, and Fe(III) SO(H2) intermediates have been proposed for the catalytic cycle of SiR, leading to a formally Fe(V)S species—akin to the widely accepted reaction mechanism in cytP450. Here, density functional theory (DFT) data is reported for of such FeSO(H2) intermediates. The Fe(III) SO2− models display relatively high energies for homolytic bond breaking compared to their isomeric oxygen‐bound Fe(III) OS2− models, and thus offer a better alternative in terms of avoiding radical side products able to induce enzyme suicide. This could be due to the fact that the (iron‐bound) sulfur is more active from a redox standpoint compared to oxygen, thus permitting the departing oxygen to maintain a redox‐inert state. Di‐protonation of the oxygen is computed to lead to a compound I type Fe(IV)S coupled to a porphyrin radical anion—consistent with an intermediate previously observed by x‐ray crystallography.  相似文献   

11.
Solar-driven CO2 reduction integrated with C−C/C−X bond-forming organic synthesis represents a substantially untapped opportunity to simultaneously tackle carbon neutrality and create an atom-/redox-economical chemical synthesis. Herein, we demonstrate the first cooperative photoredox catalysis of efficient and tunable CO2 reduction to syngas, paired with direct alkylation/arylation of unactivated allylic sp3 C−H bonds for accessing allylic C−C products, over SiO2-supported single Ni atoms-decorated CdS quantum dots (QDs). Our protocol not only bypasses additional oxidant/reductant and pre-functionalization of organic substrates, affording a broad of allylic C−C products with moderate to excellent yields, but also produces syngas with tunable CO/H2 ratios (1 : 2–5 : 1). Such win-win coupling catalysis highlights the high atom-, step- and redox-economy, and good durability, illuminating the tantalizing possibility of a renewable sunlight-driven chemical feedstocks manufacturing industry.  相似文献   

12.
Formic acid (HCOOH, FA) has long been considered as a promising hydrogen-storage material due to its efficient hydrogen release under mild conditions. In this work, FA decomposes to generate CO2 and H2 selectively in the presence of aqueous Pd2+ complex solutions at 333 K. Pd(NO3)2 was the most effective in generating H2 among various Pd2+ complexes explored. Pd2+ complexes were in situ reduced to Pd0 species by the mixture of FA and sodium formate (SF) during the course of the reaction. Since C−H activation reaction of Pd2+-bound formate is occurred for both Pd2+ reduction and H2/CO2 gas generation, FA decomposition pathways using several Pd2+ species were explored using density functional theory (DFT) calculations. Rotation of formate bound to Pd2+, β-hydride elimination, and subsequent CO2 and H2 elimination by formic acid were examined, providing different energies for rate determining step depending on the ligand electronics and geometries coordinated to the Pd2+ complexes. Finally, Pd2+ reduction toward Pd0 pathways were explored computationally either by generated H2 or reductive elimination of CO2 and H2 gas.  相似文献   

13.
Carbon cloth electrode modified by covalently attaching a manganese organometallic catalyst is used as cathode for the electrochemical reduction of CO2 in methanol solutions. Six different industrial amines are employed as co-catalyst in millimolar concentrations to deliver a series of new reactive system. While such absorbents were so far believed to provide a CO2 reservoir and act as sacrificial proton source, we herein demonstrate that this role can be played by methanol, and that the adduct formed between CO2 and the amine can act as an effector or inhibitor toward the catalyst, thereby enhancing or reducing the production of formate. Pentamethyldiethylentriamine ( PMDETA) , identified as the best effector in our series, converts CO2 in wet methanolic solution into bisammonium bicarbonate. Computational studies revealed that this adduct is responsible for a barrierless transformation of CO2 to formate by the reduced form of the Mn catalyst covalently bonded to the electrode surface. As a consequence, selectivity can be switched on demand from CO to formate anion, and in the case of ( PMDETA ) an impressive TONHCOO− of 2.8×104 can be reached. This new valuable knowledge on an integrated capture and utilization system paves the way toward more efficient transformation of CO2 into liquid fuel.  相似文献   

14.
The reduction of carbon dioxide (CO2) into value-added fuels using an electrochemical method has been regarded as a compelling sustainable energy conversion technology. However, high-performance electrocatalysts for CO2 reduction reaction (CO2RR) with high formate selectivity and good stability need to be improved. Earth-abundant Bi has been demonstrated to be active for CO2RR to formate. Herein, we fabricated an extremely active and selective bismuth nanosheet (Bi-NSs) assembly via an in situ electrochemical transformation of (BiO)2CO3 nanostructures. The as-prepared material exhibits high activity and selectivity for CO2RR to formate, with nearly 94% faradaic efficiency at −1.03 V (versus reversible hydrogen electrode (vs. RHE)) and stable selectivity (>90%) in a large potential window ranging from −0.83 to −1.18 V (vs. RHE) and excellent durability during 12 h continuous electrolysis. In addition, the Bi-NSs based CO2RR/methanol oxidation reaction (CO2RR/MOR) electrolytic system for overall CO2 splitting was constructed, evidencing the feasibility of its practical implementation.  相似文献   

15.
The main reactions yielding hydrogen are the recombination of hydrogen atoms on copper clusters and methyl formate decomposition. Methyl formate results from the interaction between the linear methoxy group and the formate complex located on CuO. The source of CO2 appearing in the gas phase is the formate complex, and the source of CO is methyl formate. The rates of methoxy group conversion and product formation over supports (ZrO2, CeO2, Ce0.8Zr0.2O2) and copper-containing catalysts (5%Cu/CeO2, 5%Cu/ZrO2, 2%Cu/Ce0.8Zr0.2O2, 2%Cu/Ce0.1Y0.1Zr0.8) are compared. The dominant process in methoxy group conversion over the supports and copper-containing catalysts is methanol decomposition to H2 and CO and to H2 and CO2, respectively. The methoxy group conversion rate is proportional to the H2 and CO2 formation rate and is determined by the concentration of supported copper.  相似文献   

16.
Carbonylation of ethanol with CO2 as carbonyl source into value-added esters is of considerable significance and interest, while remains of great challenge due to the harsh conditions for activation of inert CO2 in that the harsh conditions result in undesired activation of α-C−H and even cleavage of C−C bond in ethanol to deteriorate the specific activation of O−H bond. Herein, we propose a photo-thermal cooperative strategy for carbonylation of ethanol with CO2, in which CO2 is activated to reactive CO via photo-catalysis with the assistance of *H from thermally-catalyzed dissociation of alcoholic O−H bond. To achieve this proposal, an interfacial site and oxygen vacancy both abundant SrTiCuO3-x supported Cu2O (Cu2O-SrTiCuO3-x) has been designed. A production of up to 320 μmol g−1 h−1 for ethyl formate with a selectivity of 85.6 % to targeted alcoholic O−H activation has been afforded in photo-thermal assisted gas-solid process under 3.29 W cm−1 of UV/Vis light irradiation (144 °C) and 0.2 MPa CO2. In the photo-driven activation of CO2 and following carbonylation, CO2 activation energy decreases to 12.6 kJ mol−1, and the cleavage of alcoholic α-C−H bond has been suppressed.  相似文献   

17.
The present study proposes a new approach for direct CO2 conversion using primary radicals from water irradiation. In order to ensure reduction of CO2 into CO2−. by all the primary radiation-induced water radicals, we use formate ions to scavenge simultaneously the parent oxidizing radicals H. and OH. producing the same transient CO2−. radicals. Conditions are optimized to obtain the highest conversion yield of CO2. The goal is achieved under mild conditions of room temperature, neutral pH and 1 atm of CO2 pressure. All the available radicals are exploited for selectively converting CO2 into oxalate that is accompanied by H2 evolution. The mechanism presented accounts for the results and also sheds light on the data in the literature. The radiolytic approach is a mild and scalable route of direct CO2 capture at the source in industry and the products, oxalate salt and H2, can be easily separated.  相似文献   

18.
Transition metal Fe, Co, Ni and Cu doped strontium titanate-rich SrTiO3@TiO2 (STO@T) materials were prepared by hydrothermal method. The prepared doped materials exhibit better photocatalytic CO2 reduction to CH4 ability under visible light conditions. Among them, Fe-doped and undoped SrTiO3@TiO2 under visible light conditions CO2 reduction products only CO, while M-STO@T (M=Co, Ni, Cu) samples converted CO2 to CH4. The average methane yield of Ni-doped STO@T samples are as high as 73.85 μmol g−1 h−1. The production of methane is mainly due to the increase in the response of the doped samples to visible light. And the increase in the separation rate of photogenerated electrons and holes and the efficiency of electron transport caused by the generation of impurity levels. The impurity level caused by Ti3+ plays an important role in the production of methane by CO2 visible light reduction. Ni doping effectively improves the photocatalytic performance of STO@T and CO2 reduction mechanism were explained.  相似文献   

19.
A combined experimental and density functional theory (DFT) investigation was employed in order to examine the mechanism of electrochemical CO2 reduction and H2 formation from water reduction in neutral aqueous solutions. A water soluble cobalt porphyrin, cobalt [5,10,15,20-(tetra-N-methyl-4-pyridyl)porphyrin], (CoTMPyP), was used as catalyst. The possible attachment of different axial ligands as well as their effect on the electrocatalytic cycles were examined. A cobalt porphyrin hydride is a key intermediate which is generated after the initial reduction of the catalyst. The hydride is involved in the formation of H2 and formate and acts as an indirect proton source for the formation of CO in these H+-starving conditions. The experimental results are in agreement with the computations and give new insights into electrocatalytic mechanisms involving water soluble metalloporphyrins. We conclude that in addition to the porphyrin's structure and metal ion center, the electrolyte surroundings play a key role in dictating the products of CO2/H2O reduction.  相似文献   

20.
Selective CO2 photoreduction into C2 fuels under mild conditions suffers from low product yield and poor selectivity owing to the kinetic challenge of C−C coupling. Here, triatomic sites are introduced into bimetallic sulfide to promote C−C coupling for selectively forming C2 products. As an example, FeCoS2 atomic layers with different oxidation degrees are first synthesized, demonstrated by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Both experiment and theoretical calculation verify more charges aggregate around the introduced oxygen atom, which enables the original Co−Fe dual sites to turn into Co−O−Fe triatomic sites, thus promoting C−C coupling of double *COOH intermediates. Accordingly, the mildly oxidized FeCoS2 atomic layers exhibit C2H4 formation rate of 20.1 μmol g−1 h−1, with the product selectivity and electron selectivity of 82.9 % and 96.7 %, outperforming most previously reported photocatalysts under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号