首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We investigated the efficiency of pervaporation separation of methanol/methyl-t-butyl ether (MTBE) mixture through chitosan composite membrane modified with sulfuric acid and four surfactants. Effects of feed concentration, temperature, crosslinking degree and type of surfactants were studied. The chitosan composite membrane modified with sulfuric acid showed the pervaporation performance of over 70 wt% methanol in the permeate and flux of 100 g/m2 h measured at 25°C. At 50°C, the separation factor decreased while the flux increased exceeding 300 g/m2 h. For the membrane complexed with surfactants, the permeate showed 98.3 wt% methanol concentration and 470 g/m2 h of permeate flux at 25°C. With increasing operating temperature, the permeate flux remarkably increased to 1170 g/m2 h and the permeate showed 97.8 wt% methanol concentrations.  相似文献   

2.
A cobalt-free cubic perovskite oxide, SrFe0.9Nb0.1O3?δ (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm0.2Ce0.8O1.9 (SDC) for temperatures up to 1050 °C. The electrical conductivity of SFN sample reached 34–70 S cm?1 in the commonly operated temperatures of IT-SOFCs (600–800 °C). The area specific resistance was 0.138 Ω cm2 for SFN cathode on SDC electrolyte at 750 °C. A maximum power density of 407 mW cm?2 was obtained at 800 °C for single-cell with 300 μm thick SDC electrolyte and SFN cathode.  相似文献   

3.
Carbon monoliths with well-defined macropores and high surface areas were prepared by carbonization of macroporous poly(divinylbenzene) (PDVB) monoliths. The carbonization reactions of PDVB networks are studied by thermal analysis and FT-IR measurements. According to the measurement results, the PDVB networks are mostly pyrolyzed at 430 °C and their structures dynamically change to graphite-like structure between 600 and 700 °C. The macropore structure retained while the mesopores disappeared after carbonization. In addition, the surface area of the obtained carbons dramatically increased over 900 °C. The typical carbon monolith carbonized at 1000 °C for 2 h had a surface area of 1500 m2 g?1 and uniform macropores with a diameter of 1 μm.  相似文献   

4.
TiO2@Sn core–shell nanotube material prepared by thermal decomposition of SnCl4 on TiO2 nanotubes at 300 °C has been demonstrated superior Li-ion storage capability of 176 mA h/g even at high current rate of 4000 mA/g (charge and discharge of all TiO2 within 5 min) in spite of using low carbon content (5 wt%). This value corresponds to volumetric energy densities of 317 mA h/cm3, and its value was 3.5-fold larger than that of the bare TiO2 nanotubes.  相似文献   

5.
Different types of activated carbons were prepared by changing the activation temperatures (400–700 °C) and impregnation ratio (sewage sludge: KOH; 1:1, 1:2) and the removal of Sr+2 from aqueous solution was determined. The maximum adsorption yield (12.11 mg/g) was obtained at 500 °C for 1 h carbonization conditions with impregnation ratio of 1:1. The affecting parameters were analyzed by using central composite design method. The selected parameters were initial pH, temperature, initial strontium concentration and carbon dosage. The analysis of variance was performed in 95% confidence level and checked to fitting of experimental value and predicted value. The significant F was P < 0.05 with a model F value of 19.94 which revealed that this regression is statistically significant. The results of regression analysis indicated that pH and temperature parameters were not individually statistically significant for Sr+2sorption. However, the efficiency of strontium sorption increases with the increase in carbon dosage and decreases with the Sr+2 concentration. Influences of initial pH and temperature, pH and Sr+2 concentration, temperature and carbon dosage and Sr+2 concentration and carbon dosage on the adsorption process were considered statistically significant. Adsorption of strontium was described by Freundlich isotherm as a physical adsorption (E = 7.2 kJ/mol). The adsorption reactions were calculated as endothermic, spontaneous and favorable reactions.  相似文献   

6.
A series of ceria-based composite materials consisting of samaria doped ceria (SDC) and binary carbonates(Li2CO3–Na2CO3) were examined as functional electrolytes for low-temperature solid oxide fuel cells (SOFCs). DTA and SEM techniques were applied to characterize the phase- and micro-structural properties of the composite materials. Conductivity measurements were carried on the composite electrolytes with a.c. impedance in air. A transition of ionic conductivity with temperature was occurred among all samples with different carbonate content, which related to the interface phase. Single cells based on the composite electrolytes, NiO as anode and lithiated NiO as cathode, were fabricated by a simple dry-pressing process and tested at 400–600 °C. The maximum output power at 600 °C increased with the carbonate content in the composite electrolytes, and reached the maximum at 25 wt.%, then decreased. Similar trend has also shown at 500 °C, but the maximum was obtained at 20wt.%. The best performances of 1085 mW cm−2 at 600 °C and 690 mW cm−2 at 500 °C were achieved for the composite electrolytes containing 25 and 20 wt.% carbonates, respectively. During fuel cell operation, it found that the SDC-carbonate composites are co-ionic (O2−/H+) conductors. At lower carbonate contents, both oxide–ion and proton conductions were significant, when the content increased to 20–35 wt.%, proton conduction dominated. The detailed conduction mechanism in these composites needs further investigation.  相似文献   

7.
In this paper, a novel Nafion/SiO2 nanocomposite membrane based on the self-assembled Nafion–SiO2 nanoparticles was developed. The average particle size of Nafion–SiO2 nanoparticles prepared by self-assembly process was 2.8 ± 0.5 nm. The self-assembled Nafion–SiO2 nanoparticles significantly enhance the durability of the Nafion/silica nanocomposite membrane as compared to that of conventional Nafion/silica composite and Nafion 212 membranes under wet/dry cyclic tests at 90 °C. With an addition of 5 wt% self-assembled Nafion–SiO2 nanoparticles, the Nafion/SiO2 nanocomposite membrane shows a significantly improved performance stability at cell/humidifying temperatures of 100 °C/60 °C under a current density of 600 mA/cm2, and the degradation rate is 0.12 mV/min, almost 20 times lower than 2.33 mV/min measured on the pristine Nafion 212 membrane under the same conditions. The present results demonstrate the promises of the self-assembled Nafion/SiO2 nanocomposite membrane for elevated-high temperature PEM fuel cells applications.  相似文献   

8.
Y-doped BaZrO3 (BZY) electrolyte films are successfully fabricated by utilizing the driving force from the anode substrate, aiming to circumvent the refractory nature of BZY materials. The BZY electrolyte film on the high shrinkage anode becomes dense after sintering even though no sintering aid is added, while the BZY electrolyte remains porous on the conventional anode substrate after the same treatment. The resulting BZY electrolyte shows a high conductivity of 4.5 × 10 3 S cm 1 at 600 °C, which is 2 to 20 times higher than that for most of BZY electrolyte films in previous reports. In addition, the fuel cell with this BZY electrolyte generates a high power output of 267 mW cm 2 at 600 °C. These results suggest the strategy presented in this study provides a promising way to prepare BZY electrolyte films for fuel cell applications.  相似文献   

9.
The electrochemical performance of La0.4Sr0.6Co0.8Fe0.2O3−δ (LSCF) cathodes with different nano/microstructures is compared using the area specific resistance (ASR). Cathodes are prepared using two chemical routes, including a novel method to obtain nanosized LSCF oxide. The results clearly point that the intermediate temperature solid oxide fuel cells (IT-SOFC) cathode performance strongly depends on microstructure and that ASR can vary more than two orders of magnitude for identical composition and different morphologies, reaching values as low as 0.05 Ω cm2 at 600 °C and 0.4 Ω cm2 at 450 °C using the novel chemical route, which are even lower than the best known cathodes for IT-SOFC.  相似文献   

10.
Eastern Brazilian Pegmatite Province includes many topaz-bearing pegmatitic bodies. Residual melts from the Fe–K-rich alkaline Medina granite (ca. 500 Ma) formed the Serrinha pegmatite—a system of branched thin pegmatite veins hosted by pink facies of the parent granite. The colourless topaz from Serrinha pegmatite contains both mineral and fluid inclusions. Microcline (513, 476, 456 cm−1), albite (507, 479, 457 cm−1), topaz (926, 858, 267, 239 cm−1), quartz (463 cm−1), rutile (610, 444 cm−1), wolframite (884 cm−1) and uranophane (968, 788 cm−1) represent solid inclusions formed by fluid-induced processes from the pneumatolytic (∼600–400 °C) to hydrothermal (<400 °C) stages of pegmatite crystallization. Fluid inclusions are mainly liquid or liquid-gas, which contain CO2 (marker bands ∼1388 cm−1 and ∼1285 cm−1) and traces of methane (2917 cm−1). They are mainly of primary and pseudo-secondary origin, indicating tectonic quiescence during and after topaz crystallization (in agreement with the post-collisional nature of the parent granite). Topaz crystallized in high temperature conditions of the pneumatolytic stage at a depth around 8.5–10.0 km.  相似文献   

11.
Two sets of adsorbents were prepared from locally available raw materials, characterized and tested. The first set consists of crushed natural attapulgite and crushed attapulgite mixed with petroleum tank-bottom sludge and carbonized at 650 °C. Another set was prepared using trunk of date palm tree (Phoenix dactylifera) activated at 700 and 800 °C. Both sets were characterized using BET surface area and pore distributions, FTIR, XRD, SEM and TEM. Natural attapulgite and attapulgite/sludge composite exhibited different characteristics and adsorptive capacities for oil removal from oily water. Adsorptive capacities were calculated from the breakthrough curves of a column test. An oily water solution of about 500 mg-oil/L was passed through both the attapulgite and attapulgite/sludge columns until the column effluent concentration exceeded a reference limit of 10 mg-oil/L. Uptake was calculated at this limit at 155 and 405 mg-oil/g-adsorbent, respectively. This was lower than the performance of a commercial activated carbon sample (uptake calculated at 730 mg-oil/g-adsorbent). Relatively, the date palm, carbonaceous-based adsorbent samples showed less significant differences in both bulk and surface properties. Uptake significantly improved to 1330–1425 mg-oil/g-adsorbent. Attempt was made to associate this performance with the difference in the surface areas between the two sets. However, other factors are found to be important as the second set has a range of surface area less than that of the commercial sample. As evidenced by FTIR, XRD and TEM, the activated carbonaceous materials developed porous structures which form defective graphitic sheet ensembles that serve as additional adsorption sites in the sample.  相似文献   

12.
Turbinaria turbinata brown seaweeds were tested as carbon electrode material in symmetric, electrochemical supercapacitors. The electrochemical properties of the carbon materials were characterised for their application as supercapacitors using cyclic voltammetry, galvanostatic charge/discharge method and electrochemical impedance spectroscopic analyses. Our initial results showed that the optimal behaviour was obtained for the sample prepared by pyrolysis at 800 °C. The average surface area of the carbon was 812 m2/g. Electrochemical tests with an organic electrolyte gave the following interesting results: a capacitance of 74.5 F/g, a specific series resistance of 0.5 Ω cm2 and an ionic resistivity of 1.3 Ω cm2. These results show the promising capacitive properties of carbon derived from seaweeds and their application in electrochemical supercapacitors.  相似文献   

13.
The ceramic powders of BaCe1?xYxO3?α (x = 0.05, 0.10, 0.15, 0.20) have been prepared via a microemulsion method. Green compacts of the powders were sintered to densities higher than 95% of theoretical at the lower temperature (1500 °C). The obtained ceramics showed a single-phase of orthorhombic perovskite. The proton conduction was investigated by employing the techniques of AC impedance and electrochemical hydrogen permeation (hydrogen pumping) at 300–600 °C. It was found that the ceramics were almost pure proton conductors in wet hydrogen, and the highest proton conductivity was observed for x = 0.15 at 600 °C. Ammonia was synthesized successfully from nitrogen and hydrogen at atmospheric pressure in the electrolytic cell using BaCe0.85Y0.15O3?α. The maximum rate of NH3 formation was found to be 2.1 × 10?9 mol s?1 cm?2 at 500 °C with an applied current of 0.75 mA.  相似文献   

14.
A commercial FCC catalyst based on a zeolite active phase has been used in the catalytic pyrolysis of HDPE. The experimental runs have been carried out in a conical spouted bed reactor provided with a feeding system for continuous operation. Different treatments have been applied to the catalyst to improve its behaviour. This paper deals with the optimization of catalyst steaming and pyrolysis temperature in order to maximize the production of diesel-oil fraction. The performance of the fresh catalyst has been firstly studied at 500 °C. This catalyst gives way to 52 wt% gas yield, 35 wt% light liquid fraction and a low yield of C10+ fraction (13 wt%). After mild steaming (5 h at 760 °C) the results show a significant improvement in product distribution. Thus, gas yield decreases to 22 wt%, the yield of light liquid is similar to that of the fresh one (38 wt%), whereas the yield of the desired C10+ fraction increases to 38 wt%. Nevertheless, the best results have been obtained when a severe steaming is applied to the catalyst (8 h at 816 °C) and pyrolysis temperature is reduced to 475 °C. There is a significant reduction in the gaseous fraction (8 wt%). The light liquid fraction has also been reduced to 22 wt%, but the yield of diesel fraction increases to 69 wt%. Moreover, the deactivation of the catalyst has also been studied under the optimum conditions.  相似文献   

15.
《Solid State Sciences》2007,9(9):777-784
Petroleum coke and those heat-treated at 1860 °C, 2100 °C, 2300 °C 2600 °C and 2800 °C (abbreviated as PC, PC1860, PC2100, PC2300, PC2600 and PC2800) were fluorinated by elemental fluorine of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Natural graphite powder samples with average particle sizes of 5 μm, 10 μm and 15 μm (abbreviated as NG5μm, NG10μm and NG15μm) were also fluorinated by ClF3 of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Transmission electron microscopic (TEM) observation revealed that closed edge of PC2800 was destroyed and opened by surface fluorination, which increased the first coulombic efficiencies of PC2300, PC2600 and PC2800 by 12.1–18.2% at 60 mA/g and by 13.3–25.8% at 150 mA/g in 1 mol/dm3 LiClO4–ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 in volume). Light fluorination of NG10μm and NG15μm increased the first coulombic efficiencies by 22.1–28.4% at 150 mA/g in 1 mol/dm3 LiClO4–EC/DEC/PC (PC: propylene carbonate, 1:1:1 in volume).  相似文献   

16.
The carbonization of coal/KOH mixtures were investigated to identify the influence of potassium distributions on characteristics of the final products. The products were characterized using TGA, BET, TEM and adsorption of lead from its aqueous solutions with initial concentrations of 10–100 ppm. For the activated carbon obtained at 600 °C, the potassium distribution affected both the BET surface areas (661–1994 m2/g) and the meso- and micro-pore volumes ratios (0.48–0.91). There were also evolutions of nanostructures of both straight and curved tubular morphologies as evidenced by TEM micrograph. The samples exhibited different adsorptive capacities when tested in adsorption of lead from aqueous solutions. The adsorption followed second order kinetics and the equilibrium data were better described by empirical Freudlich isotherm model. The amount of lead adsorbed ranges from 4.3 to 47.3 mg/g. Thus, different degrees of potassium effects led to activated carbons with different surface and adsorptive properties.  相似文献   

17.
Cellulose and cellulose/montmorillonite K10 mixtures of different ratio (9:1, 3:1, 1:1) were subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 46–73.5 wt% depending on the temperature, the heating rate and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (84 wt%). The blending cellulose with increasing amount of montmorillonite K10 results in significant, linear decrease in bio-oil yield. The great influence of montmorillonite K10 amount on the distribution of bio-oil components was observed at 450 °C with a heating rate of 100 °C/s. The addition of catalyst to cellulose promotes the formation of 2-furfural (FF), various furan derivatives, levoglucosenone (LGO) and (1R,5S)-1-hydroxy-3,6-dioxabicyclo-[3.2.1]octan-2-one (LAC). Simultaneously, the share of levoglucosan (LG) in bio-oil decreases from 6.92 wt% and is less than 1 wt% when cellulose:MK10 (1:1, w/w) mixture at 450 °C is rapidly pyrolyzed. Additionally, several other compounds have been identified but in minor quantities. Their contributions in bio-oil also depend on the amount of catalyst.  相似文献   

18.
PA 6 and PA6,6 sheets irradiated with electron beam were investigated in relation to their thermal stability in various environments (air, distilled water and NaCl 5% solution) at 70 °C. The preexposure doses were 100, 200, 400 and 600 kGy at a dose rate of 22.4 kGy/s. The FTIR spectra allowed the evaluation of the progress of sample oxidation by elucidating the contributions of each environment to the ageing of polyamides. The increases in the absorbance at 1652 cm?1 placed the surrounding aggressive attack in the following sequence: air<water<NaCl solution. A scheme of degradation mechanism is proposed for the explanation on the involvement of amidic units.  相似文献   

19.
The cellulose without and with catalyst (CuCl2, AlCl3) was subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 37–84 wt% depending on the temperature, the heating rate and the amount of metal chloride. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil. The mixing cellulose with both metal chlorides results with a significant decrease of the liquid product. The non-catalytic pyrolysis of cellulose gives the highest mass yield of levoglucosan (up to 11.69 wt%). The great influence of metal chloride amount on the distribution of bio-oil components was observed. The copper(II) chloride and aluminum chloride addition to cellulose clearly promotes the formation of levoglucosenone (up to 3.61 wt%), 1,4:3,6-dianhydro-α-d-glucopyranose (up to 3.37 wt%) and unidentified dianhydrosugar (MW = 144; up to 1.64 wt%). Additionally, several other compounds have been identified but in minor quantities. Based on the results of the GC–MS, the effect of pyrolysis process conditions on the productivity of selected chemicals was discussed. These results allowed to create a general model of reactions during the catalytic pyrolysis of cellulose in the presence of copper(II) chloride and aluminum chloride.  相似文献   

20.
All-solid-state phosphate symmetric cells using Li3V2(PO4)3 for both the positive and negative electrodes with the phosphate Li1.5Al0.5Ge1.5(PO4)3 as the solid electrolyte were proposed. Amorphous Li1.5Al0.5Ge1.5(PO4)3 was added into the electrode to increase the interface area between the active materials and the electrolyte. Any other phases were not formed at the electrode/electrolyte interface even after hot pressing at 600 °C. The discharge capacity was 92 mAh g? 1 at 22 µA cm? 2 at 80 °C, and 38 mAh g? 1 at 25 °C, respectively. Symmetric cell configuration leads to simplify the fabrication process for all-solid-state batteries and will reduce manufacturing costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号