首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A novel cation exchanger (TFS-CE) having carboxylate functionality was prepared through graft copolymerization of hydroxyethylmethacrylate onto tamarind fruit shell (TFS) in the presence of N,N′-methylenebisacrylamide as a cross-linking agent using K2S2O8/Na2S2O3 initiator system, followed by functionalisation. The TFS-CE was used for the removal of Cu(II) from aqueous solutions. At fixed solid/solution ratio the various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. Kinetic experiments showed that the amount of Cu(II) adsorbed increased with increase in Cu(II) concentration and equilibrium was attained at 1 h. The kinetics of adsorption follows pseudo-second-order model and the rate constant increases with increase in temperature indicating endothermic nature of adsorption. The Arrhenius and Eyring equations were used to obtain the kinetic parameters such as activation energy (Ea) and enthalpy (ΔH#), entropy (ΔS#) and free energy (ΔG#) of activation for the adsorption process. The value of Ea for adsorption was found to be 10.84 kJ · mol?1 and the adsorption involves diffusion controlled process. The equilibrium data were well fitted to the Langmuir isotherm. The maximum adsorption capacity for Cu(II) was 64 · 10 mg · g?1 at T = 303 K. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were derived to predict the nature of adsorption process. The isosteric heat of adsorption increases with increase in surface loading indicating some lateral interactions between the adsorbed metal ions.  相似文献   

2.
In the present study a biomass derived from the leaves of Acacia nilotica was used as an adsorbent material for the removal of cadmium and lead from aqueous solution. The effect of various operating variables, viz., adsorbent dosage, contact time, pH and temperature on the removal of cadmium and lead has been studied. Maximum adsorption of cadmium and lead arises at a concentration of 2 g/50 ml and 3 g/50 ml and at a pH value of 5 and 4, respectively. The sorption data favored the pseudo-second-order kinetic model. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of the metal ions by A. nilotica biomass. Based on regression coefficient, the equilibrium data found were fitted well to the Langmuir equilibrium model than other models. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated, respectively revealed the spontaneous, endothermic and feasible nature of adsorption process. The activation energy of the biosorption (Ea) was estimated as 9.34 kJ mol−1 for Pb and 3.47 kJ mol−1 for Cd from Arrhenius plot at different temperatures.  相似文献   

3.
The present work aims to conduct a process optimization for the production of activated carbon from sludge of food processing industry. The significant feature of this sludge based activated carbon that makes it unique and economic is that it can be produced from waste material. The carbonaceous nature of this sludge does not allow its direct disposal to land because of excess organic and nutrient load contents, however, can be converted to a value added product. This process not only eliminates the need for further treatment of sludge but also reduce the cost of its handling, land filling, and transportation as well as the utilization in the same industry in the purification system.In the present work, activated carbon produced from pyrolysis of sludge was chemically activated by various activating agents. Optimization of impregnation ratio, impregnation time, activation temperature, and activation time was studied. The product was characterized through its iodine value and yield percentage. It was observed that the product had maximum iodine value of 624 mg g−1 with ZnCl2 as an activating agent. The FT-IR analysis depicts the presence of a variety of functional groups attached on the surface of activated carbon which are used in the interaction with the adsorbate during the process of adsorption. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The product formed was applied for methylene blue adsorption. The adsorption equilibrium of methylene blue dye was examined at room temperature. Adsorption isotherm was drawn by applying Langmuir and Freundlich models fitting the data indict, with an adsorption capacity of 23.6 mg g−1 and 14.2 mg g−1, respectively. The data show that methylene blue adsorption is best suited to Langmuir equation.  相似文献   

4.
A novel composite adsorbent, silica aerogel activated carbon was synthesized by sol-gel process at ambient pressure drying method. The composite was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Nitrogen adsorption/desorption isotherms (BET).In the present study, the mentioned adsorbent was used moderately for the removal of cadmium ions from aqueous solutions and was compared with two other adsorbents of cadmium, activated carbon and silica aerogel. The experiments of Cd adsorption by adsorbents were performed at different initial ion concentrations, pH of the solution, adsorption temperature, adsorbent dosage and contact time. Moreover, the optimum pH for the adsorption was found to be 6.0 with the corresponding adsorbent dosage level of 0.1 g at 60 °C temperature. Subsequently, the equilibrium was achieved for Cd with 120 min of contact time.Consequently, the results show that using this composite adsorbent could remove more than 60% of Cd under optimum experimental conditions. Langmuir and Freundlich isotherm model was applied to analyze the data, in which the adsorption equilibrium data were correlated well with the Freundlich isotherm model and the equilibrium adsorption capacity (qe) was found to be 0.384 mg/g in the 3 mg/L solution of cadmium.  相似文献   

5.
The adsorption of uranium (VI) from aqueous solutions onto natural sepiolite has been studied using a batch adsorber. The parameters that affect the uranium (VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated and optimized conditions determined. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of sepiolite and experimental results showed this to be 34.61 mg · g?1. The experimental results were correlated reasonably well by the Langmuir adsorption isotherm and the isotherm parameters (Qo and b) were calculated. Thermodynamic parameters (ΔH° = ?126.64 kJ · mol?1, ΔS° = ?353.84 J · mol?1 · K?1, ΔG° = ?21.14 kJ · mol?1) showed the exothermic heat of adsorption and the feasibility of the process. The results suggested that sepiolite was suitable as sorbent material for recovery and adsorption of uranium (VI) ions from aqueous solutions.  相似文献   

6.
Strontium-90 is one of the most important fission products generated in nuclear industry. In the research field concerning nuclear waste disposal in deep geological environment, it is necessary to quantify accurately and precisely its concentration (or the 90Sr / 238U atomic ratio) in irradiated fuels. To obtain accurate analysis of radioactive 90Sr, mass spectrometry associated with isotope dilution is the most appropriated method. But, in nuclear fuel samples the interference with 90Zr must be previously eliminated. An inductively coupled plasma mass spectrometer with multiple collection, equipped with an hexapole collision cell, has been used to eliminate the 90Sr / 90Zr interference by addition of oxygen in the collision cell as a reactant gas. Zr+ ions are converted into ZrO+, whereas Sr+ ions are not reactive.A mixed solution, prepared from a solution of enriched 84Sr and a solution of enriched 235U was then used to quantify the 90Sr / 238U ratio in spent fuel sample solutions using the double isotope dilution method. This paper shows the results, the reproducibility and the uncertainties that can be obtained with this method to quantify the 90Sr / 238U atomic ratio in an UOX (uranium oxide) and a MOX (mixed oxide) spent fuel samples using the collision cell of an inductively coupled plasma mass spectrometer with multiple collection to perform the 90Sr / 90Zr separation. A comparison with the results obtained by inductively coupled plasma mass spectrometer with multiple collection after a chemical separation of strontium from zirconium using a Sr spec resin (Eichrom) has been performed. Finally, to validate the analytical procedure developed, measurements of the same samples have been performed by thermal ionization mass spectrometry, used as an independent technique, after chemical separation of Sr.  相似文献   

7.
《Solid State Sciences》2004,6(9):907-913
The total electrical conductivity of strontium ferrites, including intergrowth Sr4Fe6O13+δ, Sr3Fe2O6+δ with a Ruddlesden–Popper structure, and SrFeO2.5+δ where the cubic perovskite lattice transforms into vacancy-ordered brownmillerite at p(O2)<10 Pa and T<850 °C, was measured at 650–1000 °C in the oxygen partial pressure range 10−15 Pa to 50 kPa. The data were used in order to determine partial ion, p- and n-type electron contributions in the vicinity of electron–hole equilibrium point. The ferrites with brownmillerite and Ruddlesden–Popper structures exhibit substantial ion transport due to thermally-activated disordering of oxygen vacancies and oxygen ions in the perovskite structural slabs, whereas the ion conductivity of Sr4Fe6O13+δ remains below 0.01 S cm−1 in the studied conditions. The bonding energy of oxygen ions, evaluated from the formation enthalpy of n-type charge carriers, increases in the sequence Sr4Fe6O13+δ<SrFeO3+δ<Sr3Fe2O6+δ. These values correlate with thermodynamic stability of strontium ferrites at low p(O2). The transition of SrFeO2.5+δ brownmillerite into disordered cubic phase above 850 °C leads to higher stability in reducing atmospheres. The level of p-type conductivity is mainly governed by the concentration of electron holes, which was calculated from the oxygen content determined by coulometric titration technique. The hole mobility, which is quite similar for all strontium ferrites and has a temperature-activated character, varies in the range 0.005–0.05 cm2 V−1 s−1 indicative of small-polaron conduction mechanism.  相似文献   

8.
High performance La2−xSrxCuO4−δ (x = 0.1, 0.3, 0.5) cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFCs) were prepared and characterized. The investigation of electrical properties indicated that La1.7Sr0.3CuO4 cathode has low area specific resistance (ASR) of 0.16 Ω cm2 at 700 °C and 1.2 Ω cm2 at 500 °C in air. The rate-limiting step for oxygen reduction reaction on La1.7Sr0.3CuO4 electrode changed with oxygen partial pressure and measurement temperature. La1.7Sr0.3CuO4 cathode exhibits the lowest overpotential of about 100 mV at a current density of 150 mA cm−2 at 700 °C in air.  相似文献   

9.
The La1?xSrxFe0.8Cr0.2O3?y (x = 0.2, 0.4, 0.6 and 0.8) phases were studied by X-ray photoelectron spectroscopy at room temperature and 57Fe Mössbauer spectroscopy at different temperatures. Mixed valence states were observed both for chromium and iron ions, justifying the complex magnetic behaviour exhibited by these compounds. The Mössbauer results indicate the simultaneous presence of Fe3+, Fe4+ and Fe5+ at 4.2 K and the co-existence of Fe3+ and Fe(3+n)+ at T = 293 K, with the latter fraction increasing with increasing strontium content. The presence of Cr3+/4+ is interpreted as being mainly responsible for the incomplete charge disproportionation reaction of iron at low temperature, as deduced from the Mössbauer results.  相似文献   

10.
Well-known reversibility of platinum voltammograms in supporting aqueous electrolytes formally contradicts the equilibrium defined by the ionic product of water: Kw = [H+] · [OH]  1 × 1014, since at any pH value, concentration of one of these ions should be too low (⩽107 M) to ensure reversibility in the whole potential region at usual scan rates. This contradiction could be overcome by allowing dissociative water adsorption on platinum. All available relevant data obtained by in situ physical methods appear to provide indirect experimental evidences for this hypothesis.  相似文献   

11.
The metallic ferromagnetic perovskite-type SrRuO3 (TC  160 K) belongs to the “class” of materials with strongly correlated electrons. Nonetheless a simple ferromagnetism associated with isotropic interactions of low spin Ru4+ ions local moments is far too simple to explain the complex interplay between charge carriers and magnetic interactions. In that sense the suppression of ferromagnetism in isoelectronic Sr1?xCaxRuO3 was tentatively associated to the increased lattice distortion influencing primarily the 4d Ru bandwidths and, hence, the itinerancy and respective populations of the spin-up and spin-down electrons.In order to probe the robustness of the metallic ferromagnetism against electron occupation of 4d Ru orbital we prepared and characterized polycrystalline Sr1?xNaxRuO3 (x = 0.0–0.19) ceramics. The substitution of Sr2+ by Na1+, leading to formally mixed valence Ru4+/Ru5+, induces the decrease of the Curie temperature and spin-wave stiffness, which was determined independently from magnetic and specific heat data. On the other hand the effective paramagnetic moment remains essentially unchanged. All compounds are metallic in a sense of electrical resistivity and thermopower temperature dependence; the low temperature upturn of the electrical resistivity was explained on a base of the weak localization. The metallic nature of the samples is corroborated by Pauli paramagnetism and high Sommerfeld coefficient γ, extracted from the low temperature specific heat, which increases from 30.9 mJ mol?1 K?2 (x = 0.0) to 43.0 mJ mol?1 K?2 (x = 0.19).  相似文献   

12.
《Comptes Rendus Chimie》2015,18(3):336-344
CuO supported on an NaA zeolite (CuO/NaA) was prepared with an NaA zeolite through the ion-exchange (CuO/NaA) method. The morphology and the physicochemical properties of the prepared samples were investigated by XRD, MEB, and EDS. The various parameters, such as contact time, catalyst dose, initial dye concentration, initial pH, and temperature, influencing the adsorption of methyl orange (MO) were optimized. The MO adsorption equilibrium was reached after 240 min of contact time. Removal of MO is better at neutral pH than in acidic and alkaline solutions. Among the tested models, the equilibrium adsorption data are well fitted by the Langmuir isotherm. The adsorption kinetics is best described by the pseudo-second-order model. The evaluation of the thermodynamic parameters, i.e. ΔGo, ΔHo, and ΔSo, revealed that MO adsorption was spontaneous, while the activation energy (20.98 kJ/mol) indicates a physical adsorption. The photodegradation of MO decreased from 100 mg/L down to 2 mg/L when the solution is exposed to visible light.  相似文献   

13.
Densities of binary mixtures of N,N-dimethylacetamide (DMA) with water (H2O) or water-d2 (D2O) were measured at the temperatures from T=277.13 K to T=318.15 K by means of a vibrating-tube densimeter. The excess molar volumes VmE, calculated from the density data, are negative for the (H2O + DMA) and (D2O + DMA) mixtures over the entire range of composition and temperature. The VmE curves exhibit a minimum at x(DMA)≅0.4. At each temperature, this minimum is slightly deeper for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures. The difference between D2O and H2O systems becomes smaller when the temperature increases. The VmE results were correlated using a modified Redlich–Kister expansion. The partial molar volume of DMA plotted against x(DMA) goes through a sharp minimum in the water-rich region around x(DMA)≅0.08. This minimum is more pronounced the lower the temperature and is deeper in D2O than in H2O at each temperature. Again, the difference becomes smaller as the temperature increases. The excess expansion factor αE plotted against x(DMA) exhibit a maximum in the water rich region of the mole fraction scale. At each temperature, this maximum is higher for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures, and the difference becomes smaller as the temperature increases. At its maximum, αE can be even more than 25 per cent of total value of the cubic expansion coefficient α in the (H2O + DMA) and (D2O + DMA) mixtures.  相似文献   

14.
Solid carbon was investigated as the fuel for an intermediate-temperature solid oxide fuel cell (IT-SOFC). An innovative, indirect operating method involving internal catalytic gasification of carbon to gaseous carbon monoxide via the reverse Boudouard reaction (C(s) + CO2(g)  2CO(g)) was proposed. The carbon gasification reaction rate was greatly enhanced by adopting FemOn–MxO (M = Li, K, Ca) as a catalyst. A peak power density of ~297 mW cm?2 was achieved at 850 °C for an anode-supported SOFC with scandium-stabilized zirconia electrolyte and a La0.8Sr0.2MnO3 cathode by applying a catalyst-loaded, activated carbon as fuel. This peak power density was only modestly lower than that obtained using gaseous hydrogen as the fuel.  相似文献   

15.
Microcalorimetry, spectrophotometry, and high-performance liquid chromatography (h.p.l.c.) have been used to conduct a thermodynamic investigation of the glutathione reductase catalyzed reaction {2 glutathionered(aq) + NADPox(aq)=glutathioneox(aq) + NADPred(aq)}. The reaction involves the breaking of a disulfide bond and is of particular importance because of the role glutathionered plays in the repair of enzymes. The measured values of the apparent equilibrium constant K for this reaction ranged from 0.5 to 69 and were measured over a range of temperature (288.15 K to 303.15 K), pH (6.58 to 8.68), and ionic strength Im (0.091 mol · kg−1 to 0.90 mol · kg−1). The results of the equilibrium and calorimetric measurements were analyzed in terms of a chemical equilibrium model that accounts for the multiplicity of ionic states of the reactants and products. These calculations led to values of thermodynamic quantities at T=298.15 K and Im=0 for a chemical reference reaction that involves specific ionic forms. Thus, for the reaction {2 glutathionered(aq) + NADPox3−(aq)=glutathioneox2−(aq) + NADPred4−(aq) + H+(aq)}, the equilibrium constant K=(6.5±4.4)·10−11, the standard molar enthalpy of reaction ΔrHom=(6.9±3.0) kJ · mol−1, the standard molar Gibbs free energy change ΔrGom=(58.1±1.7) kJ · mol−1, and the standard molar entropy change ΔrSom=−(172±12) J · K−1 · mol−1. Under approximately physiological conditions (T=311.15 K, pH=7.0, and Im=0.25 mol · kg−1 the apparent equilibrium constant K≈0.013. The results of the several studies of this reaction from the literature have also been examined and analyzed using the chemical equilibrium model. It was found that much of the literature is in agreement with the results of this study. Use of our results together with a value from the literature for the standard electromotive force Eo for the NADP redox reaction leads to Eo=0.166 V (T=298.15 K and I=0) for the glutathione redox reaction {glutathioneox2−(aq) + 2 H+(aq) + 2 e=2 glutathionered(aq)}. The thermodynamic results obtained in this study also permit the calculation of the standard apparent electromotive force E′o for the biochemical redox reaction {glutathioneox(aq) + 2 e=2 glutathionered(aq)} over a wide range of temperature, pH, and ionic strength. At T=298.15 K, I=0.25 mol · kg−1, and pH=7.0, the calculated value of E′o is −0.265 V.  相似文献   

16.
Samples of lignocellulosic material, stem of date palm (Phoenix dactylifera), were carbonized at different temperatures (400–600 °C) to investigate the effects of their impregnation with aqueous solution of either phosphoric acid (85 wt%) or potassium hydroxide (3 wt%). The products were characterized using BET nitrogen adsorption, helium pycnometry, Scanning Electron Microscopy (SEM) and oil adsorption from oil–water emulsion (oil viscosity, 60 mPa s at 25 °C). True densities of the products generally increased with increase in carbonization temperature. Impregnated samples (acid/base) showed wider differences in densities at 400 (1.978/1.375 g/cm3) than at 600 °C (1.955/2.010 g/cm3). Without impregnation, the sample carbonized at 600 °C showed higher density of 2.190 g/cm3. This sample has impervious surface with BET surface area of 124 m2/g. Acid-impregnated sample carbonized at 500 °C has the highest surface area of 1100 m2/g and most regular pores as evidenced by SEM micrographs. The amounts of oil adsorbed decreased with increase in carbonization temperature. Without impregnation, sample carbonized at 400 °C exhibited equilibrium adsorption of 4 g/g which decreases to about a half for sample carbonized at 600 °C. Impregnation led to different adsorptive capacities. There are respective increase (48 wt%) and decrease (5 wt%) by the acid- or base-impregnated samples carbonized at 600 °C. This suggests higher occurrence of oil adsorption-enhancing surface functional groups such as carbonyl, carboxyl and phenolic in the former sample.  相似文献   

17.
The mechanism has been investigated by cyclic voltammetry for the ion transfer from one aqueous phase (W1) to another (W2) across a bilayer lipid membrane (BLM) in the presence of a typical uncoupler, carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP). Voltammograms for the ion transfer were in steady-state and showed rotated sigmoidal and symmetrical shape about the origin (0 V, 0 A). The magnitude of the ion transfer current at a given applied potential increased linearly with the concentration of FCCP in W2 up to 10−6 M and then became saturated. The ion transfer current also showed a bell-type dependence on pH centered around pH  pKa + 1, Ka being the dissociation constant of FCCP in aqueous phase. These properties have been well explained by our proposed model that the ion transfer current is attributable to the transfers of H+ and Na+ distributed in BLM. The hydrophilic counter ions, H+ and Na+, compensate the negative charge of the dissociated FCCP in BLM. The current intensity is predominantly governed by the concentration and the ion mobility of the counter cations.  相似文献   

18.
A robust and effective composite film based on gold nanoparticles (GNPs)/room temperature ionic liquid (RTIL)/multi-wall carbon nanotubes (MWNTs) modified glassy carbon (GC) electrode was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the RTIL-nanohybrid film modified GC electrode by electrostatic adsorption. Direct electrochemistry and electrocatalysis of Cyt c were investigated. The results suggested that Cyt c could be tightly adsorbed on the modified electrode. A pair of well-defined quasi-reversible redox peaks of Cyt c was obtained in 0.10 M, pH 7.0 phosphate buffer solution (PBS). RTIL-nanohybrid film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis currents increased linearly to the H2O2 concentration in a wide range of 5.0 × 10−5– 1.15 × 10−3 M. Based on the multilayer film, the third-generation biosensor could be constructed for the determination of H2O2.  相似文献   

19.
A new sorbent material for removing Cr(VI) anionic species from aqueous solutions has been investigated. Adsorption equilibrium and thermodynamics of Cr(VI) anionic species onto reed biomass were studied at different initial concentrations, sorbent concentrations, pH levels, temperatures, and ionic strength. Equilibrium isotherm was analyzed by Langmuir model. The experimental sorption data fit the model very well. The maximum sorption capacity of Cr(VI) onto reed biomass was found to be 33 mg · g?1. It was noted that the Cr(VI) adsorption by reed biomass decreased with increase in pH. An increase in temperature resulted in a higher Cr(VI) loading per unit weight of the adsorbent. Removal of Cr(VI) by reed biomass seems to be mainly by chemisorption. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for Cr(VI) adsorption on reed biomass were estimated as 2205 kJ · kg?1 · K?1 and 822 kJ · kg?1, respectively. The values of isosteric heat of adsorption varied with the surface loading of Cr(VI).  相似文献   

20.
Experimental data of high pressure phase behaviour for binary mixtures of {carbon dioxide + 2-hydroxyethyl methacrylate (HEMA)}, {carbon dioxide + 2-hydroxypropyl acrylate (HPA)}, and {carbon dioxide + 2-hydroxypropyl methacrylate (HPMA)} were determined using a static type with the variable-volume cell at temperatures from (313.2 to 393.2) K and pressures up to 27.10 MPa. Among these binary experimental data, the bubble-point data were correlated with the Peng–Robinson equation of state using a van der Waals one-fluid mixing rule containing two interaction parameters (kij and ηij). The (carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems exhibit type-I phase behaviour. At constant pressure, the solubility of HEMA, HPA, and HPMA for the (Carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems increases as the temperature increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号